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Abstract. This paper delves into the mathematical intricacies of the reg-
ular paper-folding sequence, a binary string derived from repeatedly folding
a paper strip in half. Beginning with intuitive definitions and preliminary ob-
servations, we establish recursive formulas based on spatial-spectral symme-
try, culminating in a general term function 𝑑(𝑛) utilizing 2-adic valuations. We
prove key properties of 𝑑(𝑛), and uncover its profound connection to the dragon
curve fractal, first popularized by Martin Gardner, by viewing the folded strip
sideways. Through algebraic representations of dragon curves in the complex
plane using a term function 𝛿(𝑛), we derive explicit formulas for points on the
curve using the paper-folding terms. We also manage to continue our defini-
tion of 𝛿(𝑛) to arbitrary reals, which leads to our discoveries of an alternating
base-(1 + 𝑖) representation for Gaussian integers, an algorithm for generating
bounded dragon curves between 0 and 1, and a novel number base system ca-
pable of describing arbitrary real numbers. Exploratory in nature, our analysis
bridges fractal dynamics, number theory, and finite field extensions, offering
new perspectives on self-similar structures and their applications.

1. Introduction

The theory of Origami has been of ample interest to recreational mathematicians, partially due to its promis-
ing applications in aerospace engineering, yet majorly due to its significance in mathematical aesthetics.
While mainstream origami concerns itself with planar foldability, tessellation theory, as well as problems
of computational optimization, we hope to present a rather-obscure side of paper-folding that, despite its
simple definition, invites investigations in a multitude of areas in math, including fractal and fractal dy-
namics, number theory, and finite field extensions. Specifically, we highlight the mathematical significance
of the regular paper-folding sequence, a binary string that illustrates the crease patterns formed a�er fold-
ing a long, thin strip of paper repeatedly in halves. A�er observing the recurrence of previous sequences
in later ones, we embark on an analysis solely on the infinite paper-folding sequence, particularly develop-
ing upon properties of its term function. We then notice visual connections between a folded paper strip
and the dragon curve, and object of fractal nature. This associated dragon curve fractal was first investi-
gated by NASA physicist John Heighway and popularized by the great mathematician and physicist Martin
Gardner. Whilst developing an algebraic representation of general dragon curves, we observe arithmetic
connections between the dragon curve function 𝛿(𝑛) and the paper-folding term function 𝑑(𝑛), which, taken
a step further, allows us to evaluate 𝛿(𝑛) explicitly for any positive integer 𝑛 using its alternating base-2 rep-
resentation. Additionally, while trying to generalize our definition of 𝛿(𝑛) to arbitrary real numbers, we made
two important discoveries: an algorithm to generate a bounded dragon curve between 0 and 1 on the com-
plex plane; along with the capability of our newly-defined number base system in describing arbitrary real
numbers. Due to the explorative nature of this paper, we may sometimes take detours away from the dragon
curve of the folding sequence, and dwell on numeric structures and number bases.

1.1. Definitions and Preliminaries

Consider a long strip of paper of arbitrary dimensions, capable of being folded in half repeatedly in one direc-
tion. Suppose one holds the le� end of the paper while repeatedly making new creases that send the paper
above the le� holding point – then the resulting pattern could be characterized by a sequence of ones and
zeros. If we allow the number of folds to go to infinity, we would end up with what is known as the regular
paper-folding sequence (𝑑∞), with the 𝑖th term 𝑡𝑖 satisfying

𝑡𝑖 =

{
0 if the 𝑖th fold is a mountain fold;
1 if the 𝑖th fold is a valley fold.
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Figure 1 demonstrates the crease patterns obtained a�er three folding moves, corresponding to the sequence
𝑑3 = 1101100. Note that for simplicity, we omit the commas in conventional sequence terminology, and of-
tentimes treat 𝑑𝑘 as binary strings. Hence, 𝑑3 = 1, 1, 0, 1, 1, 0, 0 = 1101100.

Figure 1: Demonstration of Folds

While a mathematical formulation of a definition for the folding sequence may be lacking at this moment, we
promise to establish an equivalence between the intuitive “crease sequence” as displayed in the beginning
of this section with a rigorously-defined partial sequence. To straighten out our terminology, we introduce

Definition 1.1. 

𝑑𝑘 := the crease sequence obtained a�er 𝑘 folds;

𝑙(𝑑𝑘) := the length of the sequence 𝑑𝑘 ;

𝑡𝑖(𝑑𝑘) := the 𝑖th term of 𝑑𝑘 , for 1 ≤ 𝑖 ≤ 𝑙(𝑑𝑘).

We shall list the first few sequences 𝑑𝑖 for the comfort of our readers:



𝑑1 = 1
𝑑2 = 110
𝑑3 = 1101100
𝑑4 = 110110011100100
. . .

.

Now, the following result should be immediate:

Claim 1.2.
𝑙(𝑑𝑘) = 2𝑘 − 1.

Proof. Working our way up by induction, each new folding move adds a crease in between preexisting creases.
Given that we are also counting the two edges of the paper strip, we have
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𝑙(𝑑𝑘) = 2𝑙(𝑑𝑘−1) + 1.

Invoking our hypothesis that 𝑙(𝑑𝑘−1) = 2𝑘−1 − 1, we obtain 𝑙(𝑑𝑘) = 𝑠𝑘 − 1. □

Claim 1.2 provides us with a sense of dimension – the length of the paper-folding sequence doubles and in-
creases by an additional “one” as one more crease is added. However, it does not encode any information
regarding the actual digits of the sequence. We thus embark on a quest to pinpoint 𝑡𝑖(𝑑𝑘), either recursively
or generically.

As mathematicians play around with this folding sequence of zeros and ones, they notice numerous patterns
hinting at self-similarity and fractal structures. In subsection 1.2 we present two recursive formulae for the
regular-paperfolding sequence, one concentrating upon its central-symmetry, and another illuminating its
everywhere-recursive nature. Stemming from the two recursions, we algebraically derive a general formula
for the sequence and establish a rigorous definition for 𝑑∞ as promised. Next, in the following subsection, we
explore the sequence’s correspondence to the dragon curve fractal and its richness in generating non-square
fractals.

1.2. Recursive and General Formulae

We first introduce the concatenation operation o�entimes used in recursions of the paper-folding sequence.

Definition 1.3. Consider a (not-necessarily binary) string 𝑎 and another string 𝑏. We say 𝑎𝑏 is the concatena-
tion of 𝑎 and 𝑏 if

𝑡𝑖(𝑎𝑏) =

𝑡𝑖(𝑏) if 1 ≤ 𝑖 ≤ 𝑙(𝑏),

𝑡𝑖−𝑙(𝑏)(𝑎) if 𝑙(𝑏) < 𝑖 ≤ 𝑙(𝑎) + 𝑙(𝑏).

For example, if 𝑎 = 110, 𝑏 = 100, then 𝑎𝑏 = 110100.

Now, we invite the readers to inspect the first few terms of {𝑑𝑗}. Notice how 𝑑 𝑗−1 occurs in the first 𝑙(𝑑 𝑗−1)
terms of 𝑑 𝑗 – the sequence is then spatial-spectrally reflected as it appears in the (𝑙(𝑑𝑗−1) + 2)th until the
𝑙(𝑑 𝑗)th term. We shall rigorously define spatial-spectral reflection in a moment, but note how our observation
generates a recursive formula for 𝑑𝑖 : to obtain 𝑑𝑖 , copy down 𝑑𝑖+1, concatenate a 1, and then concatenate 𝑑𝑖+1
written backwards, with the ones changed to zeros and the zeros changed to ones.

Definition 1.4. The spectral symmetry of a binary string 𝑟 is a string 𝑟′ with

(i) 𝑙(𝑟) = 𝑙(𝑟′) = 𝑙;

(ii) 𝑡𝑖(𝑟) ⊕ 𝑡𝑖(𝑟′) = 1 for every 1 ≤ 𝑖 ≤ 𝑙.

That is, 𝑟′ is 𝑟 with all terms copied down sequentially, where the ones are changed to zeros and vice versa.

Definition 1.5. The mirror symmetry of a binary string 𝑣 is a string 𝑣′ of equal length where 𝑡𝑖(𝑣) = 𝑡𝑙−𝑖+1(𝑣′)
for all 𝑖’s within the length of the sequence. In simple terms, 𝑣′ is 𝑣 written backwards.

Definition 1.6. A binary string 𝑚 is said to be spatial-spectrally symmetric to another binary string 𝑛 if 𝑚 is
spectrally-symmetric to the mirror symmetry of 𝑛. We denote à(𝑚) = 𝑛.
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Figure 2: The sequence could be reduced to the previous sequence if one glues adjacent pieces together a�er
the first fold.

An example for Definition 1.6 may be the following two sequences: 𝑚 = 101110, 𝑛 = 100010. Hence, we may
claim the following from our observations:

Claim 1.7. Let the spatial-spectral symmetry of 𝑑 𝑗 be 𝑑′
𝑗
. That is, à(𝑑 𝑗) = 𝑑′

𝑗
. We have

𝑑 𝑗+1 = 𝑑𝑗1𝑑′𝑗 .

Proof. Consider folding a paper-strip under real-life settings. To see why the claimed recursion is true, con-
sider 𝑑 𝑗 obtained a�er 𝑗 folding moves. If one expands the paper-strip until exactly 2 layers remain, she
shall expect a crease-pattern in alignment to that as dictated in 𝑑 𝑗−1. That is, 𝑑 𝑗 could be reduced to 𝑑 𝑗−1 if
one first folds the paper in half and then glue the pieces together. Thus, the first 𝑙(𝑑 𝑗−1) terms of 𝑑𝑗 must
match 𝑑 𝑗 . Then, consider “ungluing” the paper-strip. Note that the crease according to which it is glued
must correspond to a valley fold (hence a “1”), and the remainder of the sequence must match 𝑑𝑗 in a spatial-
spectrally-symmetric way (due to the fact that each term corresponds sequentially to some previous term
as given in the gluing structure). An illustration is shown in Figure 2.

□

Next, note that not only is 𝑑 𝑗−1 present in 𝑑 𝑗 in a block-like symmetry; its digits are ubiquitously interjected
in 𝑑 𝑗 among alterating ones and zeros. We demonstrate this phenomenon in the color-coded list below:

𝑖 𝑑𝑖
1 1
2 110
3 1101100
4 110110011100100
· · · · · ·

At every iteration, one could obtain 𝑑𝑖+1 by first jotting down an alternating sequence of ones and zeros:
1?0?1?0 . . ., and then fill in the question marks with 𝑑𝑖 to obtain 𝑑𝑖+1.

Definition 1.8. A length-1 elaboration ℰ of a string 𝑠 = 𝑎1𝑎2 . . . 𝑎𝑙 sends 𝑠 to 𝑠′ where 𝑠′ = 𝑎10𝑎20 . . . 𝑎𝑙−10𝑎𝑙 .

Definition 1.9. An alternating string is a binary string of the form 1010 . . .. We are particularly interested in
those of length 2𝑘 −2𝑘−1 = 2𝑘−1 which corresponds to the alternating substring present in 𝑑𝑘 , so we write use
𝑎𝑘 to denote an alternating string of length 2𝑘−1.

Note that Definitions 1.8 and 1.9 could together give us a base “reactant” to form 𝑑 𝑗 . We shall combine ℰ(𝑑 𝑗−1)
and ℰ(𝑎 𝑗) in an intuitive way. To formalize our intuition, we define addition and scalar multiplication on
binary strings:
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Definition 1.10. The sum of two binary strings 𝑑1 and 𝑑2 is the binary representation of (𝑑1)2 + (𝑑2)2, where
both strings are considered as binary numbers in the addition process. The definition works analogously for
scalar multiplication of binary strings. Hence, for example, 1101 + 110 = 10011 and 2 · 110 = 1100.

Claim 1.11. Using our formalizations, we shall be able to obtain the following:

𝑑 𝑗 = ℰ(𝑎 𝑗) + 2ℰ(𝑑 𝑗−1).

Proof. The claim is stated esoterically for the sake of mathematical rigor, but note that this recursion essen-
tially captures the paper-folding sequence’s tendency to inherit terms from previous sequences, and add
them to itself in an algorithmic manner. To see why our claim is true, consider Figure 3:

Figure 3: Demonstration for everywhere recursion.

Note that as new folds are added in the folded paper, the creases align to the right of the strip, while the
original creases get crammed up on the le�. Hence, if one traces her finger along the edge of the paper
starting from the le�most fixed point (here denoted by a dot), then they should expect to encounter a new
1 (valley fold), then 𝑡1(𝑑 𝑗−1), and when they return to the right side of the strip, the folding would switch in
direction and turn into a mountain fold. . . Eventually, as they wind up the tour and finish at the le� edge of
the strip, they would get a sequence as expected: 1_0_1_0 . . . combined with an elaboration of the previous
sequence. □

Hence, we have demonstrated two methods to recursively obtain the sequence 𝑑𝑘 . However, curiosity de-
mands a general formula: how should we determine 𝑡𝑖(𝑑𝑘) in terms of 𝑖 and 𝑘? We address this question as
follows:

Claim 1.12. Since 𝑑𝑘 is exactly the first 𝑙(𝑑𝑘) terms of 𝑑∞ as suggested by Claim 1.7, it suffices for us to find a
general formula for 𝑑∞. For convenience, let 𝑡𝑖 denote the 𝑖th term of 𝑑∞. Let 𝑘 = 𝑣2(𝑖), where 𝑣𝑝(𝑛) denotes
the 𝑝-adic evaluation of 𝑛. We then have 𝑖 = 𝑚 ·2𝑘 , where𝑚 is an odd integer. A general formula for the terms
in 𝑑∞ could be given by

𝑡𝑖 =


1 if 𝑚 ≡ 1 (mod 4);

0 if 𝑚 ≡ 3 (mod 4).

Proof. The reason for the arising of 𝑝-adic evaluations is intuitively obvious: since 𝑎𝑘 arises in 𝑑𝑘 (an alter-
nating sequence arises in every sequence), one must be able to trace back every even term in 𝑑𝑘 to its first
appearance as an odd term in a previous 𝑑𝑘′ where 𝑘′ < 𝑘. Whenever a digit occupies an odd term, its value
would be within our predictive power: recall that odd terms alternate in ones and zeros! Mathematically, if
we are looking at an odd term 𝑖 in 𝑑𝑘 , its value would directly be 𝑖 (mod 4). If we are looking at some even
𝑖, we continuously divide 𝑖 by 2 and note that each division results in 𝑡𝑖(𝑑𝑘) to appear as the (𝑖/2)th term in
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𝑑𝑘−1, which is valid by our recursion. Finally, when we have no more 2’s to divide, 𝑡𝑖(𝑑𝑘) would fall on some
odd term and its value could then be computed via a mod out by four. Hence, this proves our claim. □

We have hitherto established a general formula to determine the 𝑖th term of the 𝑘th paper-folding sequence,
that is, 𝑡𝑖(𝑑𝑘). Stemming from symmetries of the paper-folding sequence, we have also been able to conclude
that 𝑡𝑖(𝑑𝑘) = 𝑡𝑖(𝑑∞); the infinite paper-folding sequence encapsulates all information of previous sequences.
In fact, the terms in 𝑑∞ invite curious explorations: aside from reiterating easily-derivable algebraic prop-
erties, we wish to present our readers with several occasions of awe and wonder as we recreate the author’s
unexpected scenes of discovery in the next sections. Through a well-motivated narrative, we will highlight
how dabbling with a binary-string gave rise to a monstrous fractal, and how explorations in the algebraic
representations of this dragon-curve fractal sparked wonders in an alternative form of number represen-
tation. Nonetheless, the recursions we developed in Claim 1.7 and Claim 1.11 involve lengthy definitions and
exotic symbols which may seem inconvenient for future investigations. Recollecting, the problem arises
from our notation of creases using the binary digits 0 and 1. Hence, in the next sections we would adopt a
more mathematically-concise notation for creases using the numbers +1 and −1, where +1 corresponds to a
previous “1” in the binary string, and −1 corresponds to “0”. Additionally, given our sole attention on 𝑑∞, we
disregard the redundant term number definition 𝑡𝑛 , and instead use the notation 𝑑(𝑛) = 𝑡𝑛 ; i.e., 𝑑(𝑛) outputs
the 𝑛th term of 𝑑∞.

2. Properties of the Term Function

2.1. An Elegant Restatement of Recursions

As mentioned towards the end of the Introduction, we have adopted the convention

𝑑(𝑛) =
{
+1, if the 𝑛th fold is a valley fold;
−1, if the 𝑛th fold is a mountain fold.

In addition, we define 𝑑(0) = 0. To avoid inconveniences in our future enumeration of finite substrings of 𝑑∞,
we also introduce the symbols ∧ and ∨, each corresponding to −1 and +1, respectively, when we spell out
terms in the infinite paper-folding sequence. That is, instead of writing (+1)(+1)(−1), we adopt the notation
∨ ∨ ∧ when no efforts in arithmetic are involved. Now, having translated our definition of terms in 𝑑(𝑛) into
the ±1 context, we proceed by restating our recursive formulas. First, we state the equivalence of Claim 1.11:

Claim 2.1. ?? Let 𝑛 ∈ ℕ. We must have
𝑑(2𝑛 + 1) = (−1)𝑛 ,

and
𝑑(2𝑛) = 𝑑(𝑛).

Neatly, the term function encapsulates the alternating “∨_∧ _∨ _∧ . . .” property for odd terms as well as the
reducing property for even terms – 𝑑(𝑢) = 𝑑(2𝑣2(𝑢) · 𝑢′) = 𝑑(𝑢′), where 𝑢 = 2𝑣2(𝑢) · 𝑢′. Next, alluding back to
Claim 1.7, we have

Claim 2.2. Let 𝑛 ∈ ℕ, and let 𝑚 ∈ ℤ be such that 0 < 𝑚 < 2𝑛 . We have

𝑑(2𝑛+1 − 𝑚) = −𝑑(𝑚),

beautifully capturing the spatial-mirror symmetry.
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2.2. Complete Multiplicity

We may additionally make the following claim about 𝑑(𝑛) being multiplicative:

Claim 2.3. The term function 𝑑(𝑎) is completely multiplicative in the nonnegative integers. That is, whenever
𝑚, 𝑛 ∈ ℤ+ ∪ {0}, we have

𝑑(𝑚𝑛) = 𝑑(𝑚)𝑑(𝑛).

Proof. We casework on the parity of 𝑚 and 𝑛.
First, if both 𝑚 and 𝑛 are odd, then we could write 𝑚 = 2𝑚1 + 1, 𝑛 = 2𝑚2 + 1 for nonnegative integers 𝑚1 , 𝑚2.
Note

𝑑(𝑚)𝑑(𝑛) = (−1)𝑚1(−1)𝑛1 = (−1)𝑚1+𝑛1 .

On the other hand,
𝑑(𝑚𝑛) = (−1)2𝑚1𝑛1+𝑚1+𝑛1 = (−1)𝑚1+𝑛1

since 𝑚𝑛 = 2(2𝑚1𝑛1 + 𝑚1 + 𝑛1) + 1. Hence, 𝑑(𝑚)𝑑(𝑛) = 𝑑(𝑚𝑛) for nonnegative integer pairs (𝑚, 𝑛) that are
both odd.
Now suppose exactly one of 𝑚 and 𝑛 is even. Without loss of generality, we may assume 𝑚 = 2𝑚1 + 1 and
𝑛 = 2𝑣2(𝑛)𝑛′. Hence,

𝑑(𝑚𝑛) = 𝑑(𝑛′(2𝑚1 + 1)),
where 𝑛′ is odd since 𝑣2(𝑛) is the 2-adic valuation of 𝑛. Simultaneously, note that

𝑑(𝑚)𝑑(𝑛) = 𝑑(𝑛′)𝑑(2𝑚1 + 1),
leaving us to show that

𝑑(𝑛′(2𝑚1 + 1)) = 𝑑(𝑛′)𝑑(2𝑚1 + 1),
which is evidently true given our proof to the “both odd” case. Last, if 𝑚 and 𝑛 are both even, we may hunt
down a similar trail and write 𝑚 = 2𝑣2(𝑚)𝑚′, 𝑛 = 2𝑣2(𝑛)𝑛′. Next, the equations reduce once again to proving
𝑑(𝑚′)𝑑(𝑛′) = 𝑑(𝑚′𝑛′), which has been shown in our first case. Thus, we conclude that 𝑑(𝑎) is completely
multiplicative over the nonnegative integers. □

We may now proclaim victory in simplifying notations, but can we take things a step further, and exploit such
simplicity to capture more about the revealing sequence? Before we proceed to demonstrate summative
properties of the term function, we invite our readers to picture themselves returning to the paper-folding
scene. This time, instead of setting mind on the crease patterns, consider placing the edge of a repeatedly-
folded paper strip on a flat table. A�er shi�ing her perspective from viewing the strip on top to seeing it
from the side, one should begin to see a geometric shape with fractal-like properties – this shape being what
mathematicians coin as “dragon curves.” In the next section, we will demonstrate iterations of the dragon
curve fractal for different angle choices, and in formalizing our algebraic notation for points on the dragon
curve, we will uncover the necessity of defining a function 𝑔(𝑛) in terms of 𝑑(𝑖).

3. Introducing the Dragon Curve

3.1. Obtaining the Dragon Curve from Folded Strips

As promised, we explore the shapes formed by a thin, repeatedly-folded strip of paper as one views it from
the side. In the figure below, we present an experimental strip obtained from real-world folding:
Notice that within this expansion process, we have subconsciously selected the angle in between consecu-

tive segments as 90◦, rendering what is known as the classic dragon curve with 𝜃 = 90◦. However, we may
vary 𝜃 as indicated in Figure 5:
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Figure 4: Dragon curve made from a 5-folded paper strip. 𝜃 = 90◦.

Figure 5: First few segments of the dragon curve when 𝜃 = 110◦.
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3.2. Critical 𝜃 Values

Next, we present some qualitative numerical results obtained from varying 𝜃. As 𝜃 decreases from 180◦ to
120◦, the fractal’s succinct self-similarities become increasingly-dominant. (Figure 6)

((a)) 𝜃 = 160◦ ((b)) 𝜃 = 135◦ ((c)) 𝜃 = 120◦

Figure 6: Results for large 𝜃.

At 𝜃 = 90◦, the fractal reaches a critical point beyond which self intersections would occur, whereas notably
no visible self-intersections occur at 𝜃 = 90◦. We would address this fact in a future section. (Figure 7)

((a)) 𝜃 = 110◦ ((b)) 𝜃 = 90◦ ((c)) 𝜃 = 80◦

Figure 7: Results for around right-angled 𝜃.

As 𝜃 decreases below 90◦, the characteristic dragon-curve order disappears, and self-intersecting shapes
emerge. Figure 8 shows the self-intersecting pattern for 𝜃 = 70◦.

Interestingly, at 𝜃 = 60◦, another non-self-intersecting grid of equilateral triangles emerges. (Figure 9)

Later, the curve collapses into another self-intersecting shape that seems to preserve information of the
equilateral grid formerly found at 𝜃 = 60◦. (Figure 10)
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Figure 8: 𝜃 = 70◦

Figure 9: 𝜃 = 60◦
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Figure 10: 𝜃 = 55◦

At 𝜃 = 20◦, a star-like pattern emerges, and predictably the curve collapses to a single segment at 𝜃 = 0◦.
(Figure 11)

((a)) 𝜃 = 40◦ ((b)) 𝜃 = 20◦ ((c)) 𝜃 = 0◦

Figure 11: Results for near-zero 𝜃.

Thus, by varying 𝜃 we should qualitatively conclude the following: at 𝜃 = 180◦ the paper is layed-out straight;
the curve obeys a similar trend until𝜃 decreases to 90◦. Beyond the threshold value𝜃 = 90◦, self intersections
occur for all 𝜃 excluding 𝜃 = 60◦. At near-zero 𝜃’s, particularly 𝜃 = 20◦, star-shaped curves begin to emerge.

3.3. Algebraic Representations of the Dragon Curve

Referring back to Figure 5, we develop a method to represent crease points of the dragon curve fractal. Start-
ing at its lower-most vertex, we aim to find a general formula for the 𝑛th vertex 𝛿(𝑛) of the dragon curve, as
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indicated in the labeled figure below:

Figure 12: Labeled positions of 𝛿(𝑛) for 𝜃 = 110◦.

To denote the positions of 𝛿(𝑛), we ask our dragon curve to migrate to the complex plane, and set 𝛿(0) = 0,
𝛿(1) = 1 as indicated in the figure above. Next, we define

𝜁 = 𝑒 𝑖(𝜋−𝜃) ,

and we claim that 𝜁 and some combination of 𝑑(𝑛) could define any 𝛿(𝑛). Before elaborating, we first define
a helper-function we coin as the excess function:

Definition 3.1. Define

𝑔(𝑛) =
𝑛−1∑
𝑖=1

𝑑(𝑖)

as the excess function associated to 𝑑(𝑛).

Now we explicitly claim the following:

Claim 3.2. The position of the 𝑛th vertex of the dragon curve is a sum over powers of 𝜁, where the powers are
evaluations of the excess function. That is,

𝛿(𝑛) =
𝑛∑
𝑖=1

𝜁𝑔(𝑖).

Proof. We adopt a recursive approach. Clearly 𝛼𝑛 = 𝛿(𝑛) − 𝛿(𝑛 − 1) is a power of 𝜁 since

arg(𝛼𝑛) − arg(𝛼𝑛−1) = ±(𝜋 − 𝜃),

where the signs capture the direction of the folds. When

arg(𝛼𝑛) − arg(𝛼𝑛−1) = 𝜋 − 𝜃,

the 𝑛th fold is a “∨” fold. Correspondingly, the excess function 𝑔(𝑛) satisfies

𝑔(𝑛) − 𝑔(𝑛 − 1) = 1.
12



Shanghai 2025 Lola Huang

Hence, we have
𝛼𝑛 = 𝜁𝑔(𝑛).

Similarly, we could conclude that 𝛼𝑛 = 𝜁𝑔(𝑛) when the 𝑛th fold is a “∧” fold. Telescoping, we arrive at the
desired identity

𝛿(𝑛) =
𝑛∑
𝑖=1

𝜁𝑔(𝑖).

□

In this section, we have gained ample intuition on behaviors of these exotic dragon curves at various values
of 𝜃, and while dynamics of the curve as 𝜃 varies may unveil key insights in complex dynamics, we wish to
dwell on the specific cases 𝜃 = 90◦, 𝜃 = 60◦, and 𝜃 = 20◦ in future sections. Additionally, recall that we have
been able to denote endpoints of the dragon curve fractal with powers of 𝜁, capturing their∨ and∧ variations
with the excess function 𝑔(𝑛). In the next section, we explore properties of the excess function 𝑔(𝑛) from the
perspective of the term function 𝑑(𝑛).

4. Properties of the Excess Function

Recall that the excess function

𝑔(𝑛) =
𝑛−1∑
𝑖=1

𝑑(𝑛)

counts the excess of ∨’s over ∧’s in the first 𝑛 terms of 𝑑∞. We wish to capture algebraic properties of the
function 𝑔(𝑛) in the following subsections.

4.1. Properties Inspired by Spatial-Mirror Symmetry

Notice that we have previously stated and proved the following claim on spatial-mirror symmetry:

𝑑(2𝑛+1 − 𝑚) = −𝑑(𝑚)

for 0 < 𝑚 < 2𝑛 . Hence, we may state the following:

Corollary 4.1. The excess function preserves symmetries by an offset of 1. That is,

𝑔(2𝑛+1) = 𝑔(2𝑛+1 − 𝑚 + 1).

Proof.

𝑔(2𝑛+1) = 𝑔(2𝑛+1 − 𝑚 + 1) +
𝑚−1∑
𝑖=1

𝑑(2𝑛+1 − 𝑖)

= 𝑔(2𝑛+1 − 𝑚 + 1) −
𝑚−1∑
𝑖=1

𝑑(𝑖)

= 𝑔(2𝑛+1 − 𝑚 + 1) − 𝑔(𝑚).

□

Next, we plug in specific values for the parameter 𝑚, and evaluate 𝑔(2𝑛+1):
13
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Figure 13: Piecewise Function graph of 𝑔(𝑛) for 0 ≤ 𝑛 ≤ 32.

Corollary 4.2. For nonnegative integers 𝑛, we must have

𝑔(2𝑛+1) = 1.

That is, the excess function attains a value of 1 at each power of 2.

Proof. Plugging in 𝑚 = 2𝑛 to the claim in Corollary 4.1, we have

𝑔(2𝑛+1) = 𝑔(2𝑛 + 1) − 𝑔(2𝑛) = 𝑑(2𝑛) = 𝑑(1) = 1.

□

Combining results from Corollary 4.1 and Corollary 4.2, we have the following:

Corollary 4.3.
𝑔(2𝑛+1 − 𝑚 + 1) = 1 + 𝑔(𝑚)

for 1 ≤ 𝑚 ≤ 2𝑛 .

Consequently, one might note that 𝑔(𝑛) is positive definite: that is, 𝑔(𝑛) > 0 for every 𝑛 > 1. This is true since
the starting point 𝑔(1) = 0, and the first positive integer a�er 1 is 2, which is a power of 2. Invoking Corollary
4.3, we conclude that every other positive integer 𝑚 ≠ 2𝑘 for some 𝑘 > 1 has corresponding 𝑔(𝑚) ≥ 1 by
an inductive logic. In considering the positive-definite evaluation map 𝑔 : ℤ+ ∪ {0} ↦→ ℤ+, we may graph a
piecewise plot connecting consecutive values as in Figure 13. For future record, we will refer to the graph as
the mountain plot. Notice that the spatial-mirror symmetry as observed in Corollary 4.3 is encoded within
the mountains: the mountain shape from 𝑛 = 2 to 𝑛 = 8 gets reflected horizontally, translated vertically by
1, and recurs from 𝑛 = 9 to 𝑛 = 15. The symmetry recurs for every “sub-mountain” between powers of 2
precisely due to the equality

𝑔(2𝑛+1 − 𝑚 + 1) = 1 + 𝑔(𝑚).

4.2. Locating Peaks of the Mountain Plot

Notably, the mountain plot reaches a maximum at 𝑔(𝑛) = 𝑘 for all 2𝑘−1 ≤ 𝑛 ≤ 2𝑘 , and as a consequence of this
claim the peak values increase by 1 following a shi� in interval from [2𝑘−2 , 2𝑘−1) to [2𝑘−1 , 2𝑘]. Rigorously, we
present our observation as follows:

14
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Claim 4.4. The first value of 𝑛 for which 𝑔(𝑛) = 𝑘 occurs for some 𝑛 ∈ [2𝑘−1 , 2𝑘]∩ℤ. Specifically, we claim that
such 𝑛 satisfies

𝑛 =

⌈
2𝑘+1

3

⌉
.

Proof. Let 𝑝(𝑘) denote the smallest value of 𝑛 for which 𝑔(𝑛) = 𝑘. We then have

𝑝(𝑘) = 2𝑘 + 1 − 𝑝(𝑘 − 1),

so it remains for us to demonstrate an equivalence between the recursion and the claimed general term

𝑝(𝑘) =
⌈
2𝑘+1

3

⌉
.

We observe the following via a telescoping sum: when 𝑘 is even,

𝑝(𝑘) = (2𝑘 + 1) − (2𝑘−1+1) · · · + (−1)𝑗(2𝑗 + 1) + · · · − 𝑝(1).

In this case, 𝑝(𝑘) evaluates nicely into a geometric sequence:

𝑝(𝑘) = −1 + (−2)𝑘 + (−2)𝑘−1 + · · · + (−2)2

= −1 + 4
(
(−2)𝑘−1 − 1

−3

)
= −1 + 4

3 (2
𝑘−1 + 1)

=
2𝑘+1 + 1

3 .

Similarly, we may derive an explicit formula for odd 𝑘’s:

𝑝(𝑘) = 2𝑘+1 + 2
3 .

Notice that the formulas align with the claimed ceiling function

𝑝(𝑘) =
⌈
2𝑘+1

3

⌉
,

for 𝜙(3) = 2 and
2𝑘+1 ≡ 21 ≡ 2 ≡ −1 (mod 3)

when 𝑘 is even, so ⌈
2𝑘+1

3

⌉
=

2𝑘+1 + 1
3 .

Similarly, one could find that
2𝑘+1 ≡ 20 ≡ 1 ≡ −2 (mod 3)

and hence ⌈
2𝑘+1

3

⌉
=

2𝑘+1 + 2
3 .

□

In the next section, we embark on a deeper dive into the dragon curve function 𝛿(𝑛) with aid from our knowl-
edge on 𝑔(𝑛).

15
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5. Properties of the Dragon Curve Function

Previously, we have developed the following equality specifying points on the dragon curve in the complex
plane:

𝛿(𝑛) = 1 + 𝜁𝑔(1) + · · · + 𝜁𝑔(𝑛).

Can we evaluate the dragon curve function on all positive integers? Does it generalize neatly to the negative
integers? May we expect more elegant expressions as we limit 𝜃 = 90◦? In this section we will not only
address these questions, but will also demonstrate the extraordinary world of new mathematics a light delve
into the function 𝛿(𝑛) seems to suggest – specifically, we will motivate explorations in self-similarities of the
dragon curve along with an alternative form of number representation.

5.1. Evaluating the Dragon Curve Function at Powers of 2

Naturally, we seek more concise expressions for 𝛿(𝑘), at the very least for numbers of the form 𝛿(2𝑛). First,
we claim the following:

Claim 5.1. The dragon curve function admits the following recursion

𝛿(2𝑛+1) = 𝛿(2𝑛+1 − 𝑚) + 𝜁𝛿(𝑚)

for 𝑚 ≤ 2𝑛 .

Proof. Notice

𝛿(2𝑛+1) = 𝛿(2𝑛+1 − 𝑚) +
𝑛−1∑
𝑖=0

𝜁𝑔(2
𝑛+1−𝑖)

= 𝛿(2𝑛+1 − 𝑚) +
𝑚∑
𝑖=1

𝜁1+𝑔(𝑖).

In the summation, we have
𝑚∑
𝑖=1

𝜁1+𝑔(𝑖) = 𝜁𝛿(𝑚),

which concludes our proof. □

Again, we substitute 𝑚 = 2𝑛 to obtain
𝛿(2𝑛+1) = 𝛿(2𝑛) + 𝜁𝛿(2𝑛).

Hence, we have

Claim 5.2. 𝛿(2𝑛) = (1 + 𝜁)𝑛 for all positive integers 𝑛.

Proof. Notice 𝛿(2𝑛+1) = (1+ 𝜁)𝛿(2𝑛), and 𝛿(2) = 1. Hence, the equality follows from a geometric sequence. □

Might we seek a general simplification for 𝛿(𝑛)? While the fact that 𝛿(2𝑛) evaluates nicely may propel us to
resort to base-2 representations, it seems evident that the signs in the recursion

𝛿(2𝑛+1) = 𝛿(2𝑛+1 − 𝑚) + 𝜁𝛿(𝑚)

disallows a desired simplification. We set this issue aside for now, and instead seek generalizations of 𝛿(𝑛)
to the negative integers.

16
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5.2. Generalizing the Dragon Curve Function to the Negatives

Recall that
𝑑(−𝑛) = −𝑑(𝑛),

and
𝑔(𝑛 + 1) − 𝑔(𝑛) = 𝑑(𝑛).

Additionally, we have
𝛿(𝑛 + 1) − 𝛿(𝑛) = 𝜁𝑔(𝑛+1).

Thus, 𝛿(𝑛) witnesses the following recursion:

𝜁𝑔(𝑛+1) = 𝜁𝑑(𝑛)𝜁𝑔(𝑛) ⇒ 𝛿(𝑛 + 1) − 𝛿(𝑛) = 𝜁𝑑(𝑛)(𝛿(𝑛) − 𝛿(𝑛 − 1)).

We may now hope to generalize 𝛿(𝑛) through applying these rules of recursion. For future reasons, we refrain
from specifying the value of 𝑑(0), though for now three candidates 𝑑(0) ∈ {0,±1} seem equally logical.

Corollary 5.3. Let 𝑛 ∈ ℤ+. We have
𝑔(−𝑛) = 𝑔(𝑛 + 1) − 𝑑(0).

Additionally,
𝛿(−𝑛) = −𝜁−𝑑(0)𝛿(𝑛).

Proof. To evaluate 𝑔(−𝑛), we write out the telescope of equations
𝑔(1 − 𝑛) − 𝑔(−𝑛) = 𝑑(−𝑛)
𝑔(2 − 𝑛) − 𝑔(1 − 𝑛) = 𝑑(1 − 𝑛)
...

𝑔(1) − 𝑔(0) = 𝑑(0)

.

Hence,
−𝑔(−𝑛) = 𝑑(0) + 𝑑(−1) + · · · + 𝑑(−𝑛).

Since 𝑑(−𝑛) = −𝑑(𝑛), we have
𝑔(−𝑛) = 𝑔(𝑛 + 1) − 𝑑(0).

Now consider the case for 𝛿(𝑛), which first involves a telescoping product:
𝛿(1 − 𝑛) − 𝛿(−𝑛) = 𝜁𝑑(−𝑛)(𝛿(−𝑛) − 𝛿(−𝑛 − 1))
...

𝛿(1) − 𝛿(0)
.

Multiplying, we obtain an expression for 𝛿(1 − 𝑛) − 𝛿(−𝑛):

𝛿(1 − 𝑛) − 𝛿(−𝑛) = 𝜁𝑔(1−𝑛).

Similarly, we obtain
𝛿(−𝑛 + 𝑗) − 𝛿(−𝑛 + 𝑗 − 1) = 𝜁𝑔(−𝑛+𝑗).

Thus, we may apply the telescoping sum again and get

𝛿(−𝑛) = −(𝜁𝑔(0) + · · · + 𝜁𝑔(−𝑛+1))
= −𝜁−𝑑(0)(𝜁𝑔(1) + · · · + 𝜁𝑔(𝑛))
= −𝜁−𝑑(0)𝛿(𝑛).

Thus we have been able to write both 𝑔(−𝑛) and 𝛿(−𝑛) in terms of 𝑔(𝑛) and 𝛿(𝑛), respectively. □
17
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When we restrict 𝜃 = 90◦ to examine the classic dragon curve, we have 𝜁 = 𝑖 and the following relation
between 𝛿(−𝑛) and 𝛿(𝑛), depending on the choice of 𝑑(0):

𝛿(−𝑛) =

−𝑖𝛿(𝑛), 𝑑(0) = −1;
−𝛿(𝑛), 𝑑(0) = 0;
𝑖𝛿(𝑛), 𝑑(0) = 1.

We could finally address the question: which choice of 𝑑(0) would be the most natural? Observe that 𝑑(0) acts
as a separator between 𝛿(𝑛) and 𝛿(−𝑛), and in each case the negative curve 𝛿(−𝑛) could be obtained from 𝛿(𝑛)
by an 270◦, 180◦, or 90◦ rotation. Hence, it would be most rational for us to retain the spatial-mirror symmetry
of the curve by interjecting

𝐷 = à(𝑑∞) ∨ 𝑑∞ ,
where à(𝑑∞) denotes the dragon curve evaluated at negative integer values. Therefore, we may adopt the
convention 𝑑(0) = 1.

5.3. Evaluating the Dragon Curve Function at Arbitrary Integers

Now, we may return to the question seeking simplification for the function 𝛿(𝑛) for any integer 𝑛. While
binary representations of 𝑛 failed to work, we consider the following representation

𝑛 = 2𝑘0 − 2𝑘1 + · · · + (−1)𝑡2𝑘𝑡

for nonnegative integers 𝑘0 > · · · > 𝑘𝑡 ≥ 0. We will rigorously analyze the existence of such representation in
the next sections. Now invoking the recursion

𝛿(2𝑛+1 − 𝑚) = 𝛿(2𝑛+1) − 𝜁𝛿(𝑚),

we may deduce the following:

𝛿(2𝑘0 − 2𝑘1 + · · · + (−1)𝑡2𝑘𝑡 ) = 𝛿(2𝑘0) − 𝜁𝛿(2𝑘1 − 2𝑘2 + · · · + (−1)𝑡−12𝑘𝑡 )
= (1 + 𝜁)𝑘0 − 𝜁𝛿(𝑛1)
= (1 + 𝜁)𝑘0 − 𝜁(1 + 𝜁)𝑘1 − 𝜁2𝛿(𝑛2)
...

= (1 + 𝜁)𝑘0 − 𝜁(1 + 𝜁)𝑘1 − 𝜁2(1 + 𝜁)𝑘2 · · · + (−1)𝑡𝜁𝑡(1 + 𝜁)𝑘𝑡 .

Notice that in the derivation, we simplified our notation by writing

𝑛 𝑗 =

𝑡∑
𝑖=𝑗

(−1)𝑗−𝑖2𝑘𝑖 .

Hence, we may put what we derived as a theorem:

Theorem 5.4. Let

𝑛 =

𝑡∑
𝑖=0

(−1)𝑖2𝑘𝑖 ,

where {𝑘𝑖}𝑡𝑖=0 is a list of decreasing nonnegative integers. We have

𝛿(𝑛) =
𝑡∑
𝑖=0

(−1)𝑖𝜁𝑖(1 + 𝜁)𝑘𝑖 . (5.1)

18
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Notice that Equation 5.1 remarkably captures self-similarities of the dragon curve, in a sense that 𝛿(2𝑛) is
merely a scaled-up version of 𝛿(𝑛):

𝛿(2𝑛) = (1 + 𝜁)𝑘0+1 + · · · + (−1)𝑡+1𝜁𝑡+1(1 + 𝜁)𝑘𝑡+1

= (1 + 𝜁)𝛿(𝑛).

Thus, we have
(1 + 𝜁){𝛿(0), 𝛿(1), . . .} = {𝛿(0), 𝛿(2), 𝛿(4), 𝛿(6), . . .}.

This observation inspires us to generate the dragon curve fractal in an alternative way: instead of considering
an infinite strip with each crease spaced out by unit length, we could build dragon curves by iterating an
initial segment between 0 and 1 on the complex plane! We shall illustrate our reasoning as follows:

• Stage 0: Connect 𝛿(0) = 0 to 𝛿(1) = 1.

• Stage 1: Add a vertex 𝑣 = (1 + 𝜁)−1. Connect 0 to 𝑣, and connect 𝑣 to 1. Notice that

𝛿(0) = (1 + 𝜁)−1𝛿(0),

𝛿(1) = (1 + 𝜁)−1𝛿(2),
and

(1 + 𝜁)−1 = 𝛿(1)(1 + 𝜁)−1.

...

• Stage 𝑚: consider the sequence of points

𝑃 = {𝛿(𝑖)(1 + 𝜁)−𝑖}

defined for 0 ≤ 𝑖 ≤ 2𝑚 in the integers.

It is not so hard to see that we would obtain a scaled-down dragon curve fractal a�er infinitely-many itera-
tions. Specifically, the vertices of this newly-defined dragon curve are located at

(1 + 𝜁)−𝑚𝛿(𝑘)

for 𝑘 = 0, 1, 2, . . . , 2𝑚 . We may write the list of 𝑘’s alternatively in the rationals:

(1 + 𝜁)−𝑚𝛿(𝑘) = (1 + 𝜁)−𝑚𝛿(2𝑚 · 𝑘′),

where 𝑘′ = 0, 2−𝑚 , 2 · 2−𝑚 , 3 · 2−𝑚 . . . , 1. Since 𝛿(2𝑛) = (1 + 𝜁)𝛿(𝑛), we may continue our definition of 𝛿(𝑛) to
noninteger 𝑛’s of the form

𝑛 =
𝑢

2𝑠 .

Hence, we have
(1 + 𝜁)−𝑚𝛿(2𝑚 · 𝑘′) = 𝛿(𝑘′).

Therefore, we have evaluated the dragon curve function 𝛿(𝑛) not only across the integers ℤ, but also across
the dyadic rationals. In the next section, we will have gained better appreciation of the versatility of the
alternating base-2 representation, and we promise to generalize our definition of 𝛿(𝑛) for arbitrary 𝑛 ∈ ℝ∪{0}
with that foundation.
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6. A Detour into Number Base Representations

In Subsection 5.3, we discovered the potential of an alternating form of representation using the digits 1, −1,
and 0 along with powers of 2. In particular, Theorem 5.4 identifies such representations of 𝑛 with a general
formula for 𝛿(𝑛), allowing us to evade from calculations of 𝑔(𝑛). However, in making the stateme of Theorem
5.4 that “if 𝑛 =

∑𝑡
𝑖=0(−1)𝑖2𝑘𝑖 , then 𝛿(𝑛) = ∑𝑡

𝑖=0(−1)𝑖𝜁𝑖(1 + 𝜁)𝑘𝑖 ” we made the assumption that such a form of
representation exists for each 𝑛, and that it is either unique, or all possible forms of such representation yield
the same output for 𝛿(𝑛). We address these assumptions in the following subsection, particularly showing

(i) An alternating base-2 representation exists for every integer 𝑛.

(ii) The alternating base-2 representation of every nonzero integer 𝑛 is unique up to a specification of its
last nonzero digit.

Additionally, we note that the expression for 𝛿(𝑛) could also be viewed under the context of number repre-
sentations, and hence dedicate a small portion of this section to exploring its properties.

6.1. Alternating Base-2 Representation

First, we rigorously define an alternating base-2 representation.

Definition 6.1. An alternating base-2 representation of some integer 𝑛 is a string 𝜅 consisting of {0, 1, 1̄}
which, disregarding the zeros, has the 1’s and 1’s alternate in appearance. Additionally, if one numbers the

characters 𝜅𝑖 of 𝜅 from right to le� starting at 0, she shall obtain

𝑛 =

𝑡∑
𝑖=0

𝜅𝑖 · 2𝑖

for 𝑡 = 𝑙(𝜅).

In the next example, we illustrate a generalizable scheme to turning conventional base-2 representation to
alternating base-2 representation. To begin, consider

1001 = (1111101001)2 ,

which means

1001 = 29 + 28 + 27 + 26 + 25 + 23 + 20

= (29 + 28 + 27 + 26 + 25) + (23) + 20

= 210 − 25 + 24 − 23 + 21 − 20

= (100001̄11̄011̄)2.

Hence, a possible alternating base-2 representation of 1001 is given by (100001̄11̄011̄)2. In general, to obtain
an alternating base-2 representation of an integer 𝑛, we may perform the following procedure:

(i) Write 𝑛 in base 2.

(ii) Identify “chunks of one” in the binary representation of 𝑛. More precisely, view the binary representa-
tion bin𝑛 of 𝑛 as a concatenation of blocks of ones and zeros, where each block of ones corresponds to
the sum

𝑆 = 2𝑗 + 2𝑗+1 + · · · + 2𝑗+𝑢 .
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We may evaluate 𝑆 using the geometric sum

𝑆 = 2𝑗+𝑢+1 − 2𝑗 ,

and replace the chunk of ones of length 𝑢 + 1 with the string “100 · · · 01̄” of length 𝑢 + 2.

(iii) Iterate over every chunk of 1. The resulting string corresponds to an alternating base-2 representation
of 𝑛.

Next, we claim there are, in sum, only two alternating base-2 representations for any integer 𝑛.

Lemma 6.2. Call an alternating base-2 representation of 𝑛 a 1-rep if its last nonzero character ends in 1, and
1̄ otherwise. Then any nonzero integer 𝑛 has exactly two alternating base-2 representations, respectively
corresponding to a 1-rep and a 1̄-rep.

Proof. It suffices for us to show that each 𝑛 has exactly one 1-rep because there exists a bijection between
1̄-reps and 1-reps - a 1̄-rep of 𝑛 could be obtained by negating each character of a 1-rep of −𝑛, and a similar
logic works for obtaining 1-reps from 1̄-reps. Hence, we prove that each nonzero 𝑛 has exactly one 1-rep with
induction. Clearly 1 = (1)2 and −1 = (1̄1)2 allow only one 1-rep. Now we casework on the parity of 𝑛 for some
|𝑛| > 1. If 𝑛 is even, the only 1-rep exists and is obtained by appending a zero to the 1-rep of 𝑛/2. On the other
hand, if 𝑛 is odd, one may find the 1-rep of −(𝑛 − 1)/2, take the negative of all its characters, and append a
1 to the end. We may see that these are the only ways to obtain a 1-rep, hencing yielding our claim that an
alternating base-2 representation of 𝑛 is unique up to a specification of representation type, namely 1-rep
or 1̄-rep. □

Due to the binary context of our narrative, we may alternatively refer to 1-rep as positive representations,
and 1̄-rep as negative representations. Next, consider the list of alternating base-2 representations for the
first 8 positive integers. By “shorter representation,” we refer to the representation with a greater number
of nonzero digits.

𝑛 1-rep 1̄-rep Shorter Representation
1 1 11̄ 1
2 10 11̄0 1
3 11̄1 101̄ −1
4 100 11̄00 1
5 11̄01 11̄11̄ 1
6 11̄10 101̄0 −1
7 101̄1 1001̄ −1
8 1000 11̄000 1

Table 1: In the “Shorter representation” column, we use 1 for Type-1 and -1 for Type-1̄.

Note that the last column bears a striking resemblance with the regular paper-folding sequence - a fact we
will demonstrate in the next claim.

Definition 6.3. Define 𝜅(𝑛), a function on 𝑛 that returns 1 if the 1-rep of 𝑛 contains more nonzero digits
than its 1̄-rep, and let 𝜅(𝑛) = −1 otherwise. We call a representation longer if the function returns that
corresponding representation.

Claim 6.4. The boolean function 𝜅(𝑛) returns 1 if and only if 𝑑(𝑛) = 1.

Proof. Note that the 1-rep of 𝑛 will will be shorter than its 1̄-rep only if the last nonzero chunk in the 1-rep of
𝑛 is 01, in which case the 1̄-rep could be obtained by simply changing 01 to 11̄, thus adding one digit. For the
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complementary case where the last nonzero chunk ends in 1̄1, we may replace 1̄1 with 01̄ and hence obtain
a representation with one less nonzero digit. Equivalently, we know for a fact that 𝜅(𝑛) = 1 if and only if the
binary representation of 𝑛 ends in the form

01,

010,

0100,

· · · .
That is in turn equivalent to having 𝑛/(𝑣2(𝑛)) ≡ 1 (mod 4), which implies 𝑑(𝑛) = 1 by Claim 1.12. □

Further, one may note that these representations even reflect the spatial-mirror symmetry of regular paper-
folding sequences. In particular, taking a symmetry around 𝑛 = 4, we have the 1-rep of 1, 2, and 3 to recur at
the ends of the 1̄-reps 7, 6, and 5 in reversed signs. (i.e., identify 1 with 1̄; 10 with 1̄0; 11̄1 with 1̄11̄.) The same
happens if we were instead examining the 1̄-rep of 1, 2, and 3 as well as the corresponding 1-rep of 7, 6, and
5. At 𝑛 = 4, 1̄00 is itself the negation of 100.

Claim 6.5. For every 𝑚 ∈ (0, 2𝑘 − 1) ∩ ℤ, the 1-rep of 2𝑘 − 𝑚, with its digits negated, corresponds to the last
digits of a 1̄-rep of 2𝑘 +𝑚. Furthermore, the last digits of the longer representation of 𝑛 matches the negated
digits of its shorter representation.

Proof. It suffices for us to show that the 1̄-rep for 2𝑘 +𝑚 has exactly one more total digit than that for 2𝑘 , for
if this is true, we could take away the leading “1” in the 1̄-rep for 2𝑘 +𝑚 and negate its digits to get a 1-rep for
2𝑘 −𝑚, since they add up to 2𝑘+1. By reversing the procedure we presented in turning binary representations
to alternating base-2 representations, we shall conclude that the largest-possible value for an alternaing
base-2 representation of total length 1 + 𝑘 of any type (1 or 1̄) occurs at (100 · · · 0)2. In other words, adding
alternating 1̄’s and 1’s in the zeros within (100 · · · 0)2 will merely decrease it value. Hence, the total length of
a representation for 2𝑘 +𝑚 is at least 𝑘 + 2. To show that it is exactly 𝑘 + 2, we demonstrate another intuitive
fact about alternating base-2 representations: if the total length of the alternating base-2 representation of
𝑛1 is greater than that of 𝑛2, then 𝑛1 ≥ 𝑛2. (Equality holds only when 𝑛1 = 𝑛2.) This fact could again be shown
by our useful binary-to-alternating-base-2 procedure. Hence, we may conclude that the 1̄-rep for 2𝑘 +𝑚 has
𝑘 + 2 digits, and we may proceed by removing the leading digit 1 and negating its remaining digits to obtain
the 1-rep for 2𝑘 − 𝑚. □

The two claims we just presented evoked spontaneous feelings of awe and terror when I first conjectured
their truth - how could a number representation interact so intimately with the paper-folding sequence,
emerging in hauntingly-concealed places only few would have fathomed? Here the alternating base-2 rep-
resentation serves not only as a tool for us to understand the dragon curve function 𝛿(𝑛), an object obtained
from the regular paper-folding sequence, but the representation itself reflects facts about this sequence, in
the most intuitively-obvious ways. The tools we use to analyze X contains new truths about X itself. In the
next subsection we analyze the resulting equation

𝛿(𝑛) =
𝑡∑
𝑗=0

(−𝜁)𝑗(1 + 𝜁)𝑘 𝑗

under the concept of an alternating base-(1+ 𝜁) representation, hoping to develop further connections with
our objects of interest. In particular, we start by setting 𝜁 = 𝑖 which corresponds to the nicest curve - the
classical 90-degree dragon.
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6.2. Alternating Base-(1 + 𝑖) Representation of the Gaussian Integers

A�er picking 𝜁 = 𝑖, (−𝜁)𝑖 repeats with a period length of four: (−𝜁)𝑖 = 1,−𝑖 ,−1, 𝑖, each corresponding to
𝑖 ≡ 0, 1, 2, 3 (mod 4). We may employ a similar notation for negative returns: let 𝑖 = −𝑖; 1̄ = −1. In this case
𝛿(𝑛) becomes

𝛿(𝑛) =
𝑡∑
𝑗=0

(−𝑖)𝑗(1 + 𝑖)𝑘 𝑗 .

If we allow the choice of 𝑡 and 𝑘 𝑗 to be arbitrary nonnegative integers, we shall immediately notice that
{𝛿(𝑛)} ⊆ ℤ[𝑖]; the possible values of 𝛿(𝑛) form a subset of the Gaussian integers. A good question to ask
from here would be, does this containment work in reverse? We first define the following:

Definition 6.6. An alternating base-(1 + 𝑖) representation of some 𝛼 ∈ ℤ[𝑖] is a string of length 𝑡 + 1 with
nonzero digit (−𝑖)𝑗 on its (𝑘 𝑗+1)th character (counting from the right) and zero everywhere else. Specifically,
the set {𝑘 𝑗} satisfies

𝛿(𝑛) =
𝑡∑
𝑗=0

(−𝑖)𝑗(1 + 𝑖)𝑘 𝑗 .

Definition 6.7. An alternating base-(1+ 𝑖) representation of some 𝛼 ∈ ℤ[𝑖] is an 𝜔-rep (or of type 𝜔) for some
𝜔 ∈ {1,−𝑖 ,−1, 𝑖} if its rightmost nonzero digit is 𝜔.

As speculated, the containment does apply in reverse, granting every Gaussian integer an alternating base-
(1 + 𝑖) representation unique up to a specification of representation type.

Claim 6.8. Every Gaussian integer 𝛼 has exactly one alternating base-(1 + 𝑖) representation of type 𝜔.

Proof. We show every 𝛼 = 𝑎 + 𝑏𝑖 has a unique 1-rep. Note that every other 𝜔-rep could be obtained by multi-
plying a 1-rep of 𝛼/𝜔 by 𝜔. Next we induct on the norm of 𝛼, 𝑁(𝛼) = 𝑎2 + 𝑏2. Notice first

(1 + 𝑖)(𝑎 + 𝑏𝑖) = (𝑎 − 𝑏) + (𝑎 + 𝑏)𝑖 ,

where the sum of its real and imaginary parts is always even. Hence we may invoke a 2-adic argument and
reduce 𝛼 = 𝑎 + 𝑏𝑖 where 𝑎 + 𝑏 is even to a case where 𝑎′ + 𝑏′ is odd. Notice that the only representation of
𝑎 + 𝑏𝑖 is a representation of

𝑎 + 𝑏𝑖
1 + 𝑖 =

𝑎 + 𝑏
2 +

(
𝑏 − 𝑎

2

)
𝑖 , (6.1)

followed by a zero. Once 𝑎 + 𝑏𝑖 is reduced in this manner to some 𝑎′ + 𝑏′𝑖 where 𝑎′ + 𝑏′ is odd, we may note
that the only possible 1-rep of 𝑎′ + 𝑏′𝑖 is a 1-rep of

𝑎′ + 𝑏′𝑖 − 1
𝑖(1 + 𝑖) =

1 − 𝑎′ + 𝑏′
2 +

(
1 − 𝑎′ − 𝑏′

2

)
𝑖 , (6.2)

multiplied by 𝑖 and appended by 1. It thus remains for us to show that the norms are reduced in Equations
6.1 and 6.2. This is necessarily true for Equation 6.1, but we may need to be more careful for Equation 6.2.
Consider 𝛽 = 𝑎 + 𝑏𝑖 (𝑎 + 𝑏 odd) and 𝛾 = 𝑎+𝑏𝑖−1

𝑖(1+𝑖) . We note that

𝛽2 − 𝛾2 =
(𝑎 + 1)2

2 + 𝑏2

2 − 1.

Notice that 𝛽2 − 𝛾2 is positive whenever 𝑎2 + 𝑏2 > 1 with only one violate: when 𝑎 = −2 and 𝑏 = 𝑖. We may
verify that case manually and hence conclude our proof. □

The readers may find it interesting to explore the proceeding list of problems:
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(i) Define a base-𝛼 representation of some 𝜈 ∈ ℤ[𝑖] with coefficients 𝒟 to be a string (𝑑𝑘 . . . 𝑑1𝑑0) of 𝑑 𝑗 ’s
satisfying

𝜈 =

𝑘∑
𝑗=0

𝑑 𝑗𝛼
𝑗 .

Note this is a generalization of integer bases: we know for a fact that a base-𝑛 representation of the
integers with coefficients in 𝒟 = [𝑛 − 1] := {0, 1, . . . , 𝑛 − 1} always exists. We may ask: for which 𝛼 and
which set of coefficients does a unique representation of the Gaussian integers exist? Specifically, does
such a 𝒟 exist for 𝛼 = 1 + 𝑖?

(ii) Following (i), does there exist a procedure akin to the “base-2 to alternating base-2” algorithm that al-
lows us to convert base-(1+𝑖) representations to alternating base-(1+𝑖) representations of the Gaussian
integers?

(iii) We may associate the four representations as a directional representation for each Gaussian integer
in the complex plane. For example, a 𝑖-rep of 𝛼 = −3 + 2𝑖 would be identified with the direction down
at −3 + 2𝑖 in the complex grid of Gaussian integers. Does there exist connections between nonzero
representation length and the dragon curve fractal?

(iv) Did you enjoy working with these problems? We believe thinking in the meta shall allow you to ascertain
intellectual pursuits of unique relevance.

6.3. Generalized Alternating Bases

Notice that in our introduction to the dragon curve fractal, we presented graphs of the curve for different
choices of 𝜃, thus corresponding to different values of 𝜁. In some cases, the curve diverges rapidly, while
in others, it seems to be trapped in a cycle-like trajectory (𝜃 = 20◦). So far we have been inspecting the
most tamed case among all - when 𝜃 = 90◦, the dragon curve with unit length segments diverges and seems
to cover the grid of Gaussian integers. We shall clarify that the graphs presented in Section 3.2 are honest
reflections of the shape of dragon curves, yet they do not account for the size of these objects. In theory, all
the curves would diverge beyond 𝜃 = 60◦, but in our code we “scaled-down” the infinite curves by fixing the
endpoints within a unit interval, and drawing the graph by iterating on points of bounded norm. In fact, the
mathematical details of this process were presented in Section 3.3.
To conclude this section, we make some final remarks regarding the representation

𝛿(𝑛) =
𝑡∑
𝑗=0

(−𝜁)𝑗(1 + 𝜁)𝑘 𝑗 .

Notice that for any given 𝜁, the set of all possible values for 𝛿(𝑛)must be a subset of the ring of integers𝒪𝐾 for
the cyclotomic field extension𝐾 = ℚ(𝑖 , 𝜁𝑛). Hence one may hope to make future explorations via scrutinizing
special subsets of 𝒪𝐾 .
In the next section, we will fulfill our wish to extend the definition of 𝛿(𝑛) to arbitrary reals.

7. Analytic Continuation of the Dragon Curve Function

In Section 5 we have established a way to evaluate the dragon curve function without consulting the excess
function 𝑔(𝑛); now having established a solid understanding on alternating base-2 representations, we may
ask the following:
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Is there an alternating base-2 representation for all positive reals 𝑠 ∈ ℝ+? If so, for which 𝜁’s does 𝛿(𝑠) con-
verge?

We will address these questions in the next subsections.

7.1. Existence and Uniqueness of Alternating Base-2 Representations

Intuitively, a binary representation should exist if we assume the fact that each real number has a unique
decimal expansion, thus allowing us to extend our claim of existence to alternating base-2 representations.
Therefore, we will work in binary first. Nonetheless, notice that

(1)2 = (0.11 . . .)2 ,

thus binary representations are not unique. However, in the following statements, we wish to redeem unique-
ness of binary representations akin to how we disallow representations like 0.99 . . . in the decimal digits.
Since the Euclidean algorithm suggests that every positive integer admits a unique binary representation,
it would suffice for us to show that a binary representation of {𝛼} ∈ (0, 1) exists and is unique up to certain
limitations. Now, the following the statement addresses the existence of binary representations while using
the Archimedean Property of the reals.

Lemma 7.1. Each real number 𝑠 ∈ (0, 1) admits a binary representation

𝑠 = (0.𝑐1𝑐2 · · · 𝑐𝑘 . . .)2.

Equivalently, there exists a multiset of coefficients {𝑐𝑖} where each 𝑐𝑖 ∈ {0, 1} such that

∞∑
𝑖=1

𝑐𝑖 · 2−𝑖 = 𝑠.

Proof. We construct a cauchy sequence {𝑐𝑘} approaching 𝑠. Alluding to the Archimedean Property of the
reals, we may find 𝑐𝑘 as follows:

0 < 𝑠 < 1;

𝑐1 · 2−1 < 𝑠 < 𝑐1 · 2−1 + 2−1;
...

𝑘∑
𝑖=1

𝑐𝑖

2𝑖
< 𝑠 <

𝑘∑
𝑖=1

𝑐𝑖

2𝑖
+ 𝑐𝑘

2𝑘
.

Hence, {𝑐𝑘} is a cauchy sequence that converges to 𝑠, so we have demonstrated the existence of a binary
representation. □

Next, we may state our criterion for uniqueness:

Lemma 7.2. Every real number 𝑠 ∈ (0, 1) has a unique binary representation, where we choose the finite
expansion 𝑠 = (0.𝑐1𝑐2 · · · 𝑐𝑚)2, 𝑐𝑖 ∈ {0, 1}, 𝑐𝑚 = 1 if it exists, and disallow the infinite expansion

𝑠 = (0.𝑐1𝑐2 · · · 𝑐𝑚−10111 · · · )2.
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Proof. Suppose for the sake of contradiction that there exists an unspecified alternative binary representa-
tion of 𝑠, where some 𝑐𝑘 is changed to 𝑑𝑘 in the 𝑘th digit. In response to this at least 1/2𝑘 offset, we need some
𝑐 𝑗 to be changed to 𝑑 𝑗 for some 𝑗 > 𝑘. However, ∑

𝑗>𝑘

𝑑 𝑗

2𝑘
≤ 1

2𝑘
,

so the only possible case occurs at the equality ∑
𝑗>𝑘

𝑑 𝑗

2𝑘
=

1
2𝑘
.

This happens only when we shi� 𝑐𝑘 to 𝑐𝑘−1, making 𝑑 𝑗 = 2−1 = 1. Yet the conditions are sufficient only if 𝑐 𝑗 = 0
for all future 𝑗 > 𝑘, since only in that case may one shi� each 𝑑 𝑗 to 1 to compensate the change in 𝑐𝑘 . This
case was disallowed in the specifications, so we have redeemed uniqueness of binary representations. □

Notice that by our previous analysis, we may extend our claim in existence and uniqueness to arbitrary reals
𝑠. Next, we combine what we know from Section 6 with our knowledge on binary representations to establish
the following theorem:

Theorem 7.3. Each real number 𝑠 admits a unique alternating base-2 representation. If 𝑠 has a finite binary
representation, then we specify uniqueness up to positives as defined in Section 6.

Proof. We will outline a proof below. First, one could show that each real number 𝑠 with a finite binary rep-
resentation

𝑠 = (𝑐0.𝑐1𝑐2 · · · 𝑐𝑘)2
admits a unique alternating base-2 representation with its last nonzero digit being positive using methods
similar to that in Section 6. Next, we again restrict 𝑠 ∈ (0, 1) and observe that for any real number with only
an infinite binary representation with digits {𝑐𝑖}∞𝑖=1, we could take the limit as 𝑁 → ∞ and argue that

(0.𝑐1𝑐2 · · · 𝑐𝑁 )2

admits only one alternative base-2 representation. □

7.2. Continuing the Dragon Curve Function to the Nonnegative Reals

Recall that we have derived a simple equation for 𝛿(𝑛):

𝛿(𝑛) = (1 + 𝜁)𝑘0 − 𝜁(1 + 𝜁)𝑘1 + · · · + (−𝜁)𝑡(1 + 𝜁)𝑘𝑡

for 𝑛 = 2𝑘0 − 2𝑘1 + · · · + (−1)𝑡2𝑘𝑡 . Additionally, we have also been able to evaluate 𝛿(𝑘′) for the dyadic integers.
Should we hope to extend the dragon curve function 𝛿 to the entire real number line? We start with the
positive reals.
When 𝑛 = 𝑠, we hope to show that 𝛿(𝑠) is defined. If 𝑠 admits a finite alternating base-2 representation,
then we may apply the definition of 𝛿(𝑛) but for negative powers 𝑘𝑖 and conclude that 𝛿(𝑠) exists for arbitrary
choices of 𝜁. In dealing with infinite alternating base-2 representations, it suffices for us to consider

𝑠 = 2𝑒0 − 2𝑒1 + · · · + (−1)𝑟2𝑒𝑟 + · · ·

for a chain of negative integers
0 > 𝑒1 > 𝑒2 > · · · > 𝑒𝑟 > · · · .
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In order for the series
𝛿(𝑠) = (1 + 𝜁)𝑒0 − 𝜁(1 + 𝜁)𝑒1 + · · · + (−𝜁)𝑟(1 + 𝜁)𝑒𝑟 + · · ·

to converge, we need each term in the summation to never outgrow terms in the geometric series∑
𝑟

(
𝜁

1 + 𝜁

) 𝑟
.

To choose such 𝜁, notice that 𝑟 ≤ −𝑒𝑟 , so each term in the series is indeed absolutely bounded by����( 𝜁
1 + 𝜁

) 𝑟 ���� .
Thus, 𝛿(𝑠) would converge as long as powers of 𝜁/(1+ 𝜁) remain bounded. We thus need 𝜋 − 𝜃 ∈

[
𝜋
3 ,𝜋

]
in the

upper half plane as illustrated in the figure below: We may restate our results as follows:

Figure 14: For any complex number 𝑧 on the dotted part of the unit circle centered at the origin, |1 + 𝑧| > |𝑧|.
For 𝑧 not on that part, |1 + 𝑧| ≤ |𝑧|, making 𝛿(𝑠) diverge.

Theorem 7.4. For any fixed 𝜃 ∈
[
𝜋
3 ,𝜋

]
, the series 𝛿(𝑠) converges absolutely for any 𝑠 ∈ ℝ+. Hence, the function

𝛿(𝑠) is defined for 𝑠 ∈ ℝ+.

8. Space-filling Properties of the Classic Dragon Curve

Consider Figure 15: four dragon curves, all beginning at the origin, seem to fill an ample amount of space. In
fact, we conjecture the following:

Conjecture 8.1. Four copies of the unit-length classical dragon curve (with 𝜃 = 90◦) placed at the same point
in the complex plane and each rotated by 90◦ happen to cover the grid of Gaussian integers, in a sense that
each segment connecting some 𝛼 ∈ ℤ to 𝛼 + 𝜔 is traversed by one of the curves exactly once. Consequently,
the classical dragon curve is not self-intersecting.

9. Conclusion

We started with a thin strip of paper, folded it repeatedly in halves, settled the sheet on its side and, with some
imaginative prowess, managed to construct an unfamiliar world of mathematics. Specifically, in describing
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Figure 15: Demonstration that four dragon curves cover the grid of Gaussian integers. This graph is again a
scaled-down version using the technique presented in Section 3.3.

dragon curves, we adopted the term function 𝛿(𝑛) and managed to perform an analytic continuation of 𝛿
onto arbitrary reals. Additionally, an explicit evaluation of 𝛿(𝑛) propelled us to explore an alternative form
of number representation, which we coined as alternating base-2 representation of the integers and alter-
nating base-(1+ 𝑖) representation of the Gaussian integers. Stemming from our interest in the dragon curve
function, we suggested a direction for future exploration, namely in exploring valid subsets of the ring of
integers for cyclotomic field extensions, particularly those expressible in the form specified by alternating
bases.
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1 import turtle
2

3 def generate _ dragon _ curve ( iterations ):
4 sequence = "FX"
5 for _ in range ( iterations ):
6 new_ sequence = ""
7 for char in sequence :
8 if char == "F":
9 new_ sequence += "F"

10 elif char == "X":
11 new_ sequence += "X+YF+"
12 elif char == "Y":
13 new_ sequence += "-FX -Y"
14 else :
15 new_ sequence += char
16 sequence = new_ sequence
17 return sequence
18

19 def draw_ dragon _ curve (sequence , length , angle ):
20 turtle . speed (0)
21 turtle . penup ()
22 turtle .goto (-50, -50)
23 turtle . pendown ()
24 turtle . color ("blue")
25 for char in sequence :
26 if char == "F":
27 turtle . forward ( length )
28 elif char == "+":
29 turtle . right ( angle )
30 elif char == "-":
31 turtle .left( angle )
32

33 def main( iterations =10 , length =10 , angle =144) :
34 screen = turtle . Screen ()
35 screen . title (" Dragon Curve ")
36 turtle . tracer (0)
37 sequence = generate _ dragon _ curve ( iterations )
38 draw_ dragon _ curve (sequence , length , angle )
39 turtle . update ()
40 turtle .done ()
41

42 if __name__ == "__main__":
43 angle = float ( input (" theta = "))
44 main( iterations =10 , length =70 , angle = angle )

Listing 1: Generating dragon curves for arbitrary 𝜃 values
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