
Molecular Dynamics Simulations of the Temperature
Dependence of Rate Constants for the H2 + Cl2 → 2HCl

Gas-Phase Reaction

Xinyan Lola Huang

1. Introduction

1.1. Background and Motivation

The rate of a chemical reaction is fundamental to understanding and controlling chemical

processes across science, biology, industry, and common-day life. The reaction between hy-

drogen gas (H2) and chlorine gas (Cl2) to form hydrogen chloride (HCl) under sources of

UV-light is a classic example of a bimolecular gas-phase reaction.

H2 + Cl2 → 2HCl.

While the Arrhenius equation provides an empirical relationship between temperature and

reaction rate, experimental tests are deemed dangerous under the presence of toxic chlorine

gas. Additionally, mixtures of chlorine and hydrogen are flammable and potentially-explosive

within a known concentration range, hence further hindering experimental tests. The chal-

lenges associated with direct experimentation highlight the need for alternative approaches

such as computational modeling to determine reaction rates without compromising safety.

1.2. Research Significance

Our research bridges the gap between microscopic molecular dynamics and macroscopic

reaction rate, demonstrating and verifying:

(i) The emergence of Maxwell-Boltzmann Distribution from particle collisions;

(ii) The positive relation between chlorine-hydrogen reaction rate and temperature;

(iii) The robustness of computational methods in predicting reaction rate.

2. Methodology

Building upon our goals as introduced earlier, this section outlines the computational frame-

work employed to explore the temperature-dependent kinetics of the aforementioned gas-

phase combination reaction. Our model integrates principles from statistical mechanics and

collision theory, enabling a detailed examination of molecular interactions under varying

thermal conditions.

1

2.1. Research Goals

The primary objective is to simulate the reaction between hydrogen (H2) and chlorine (Cl2)

at a molecular level to determine the impact of temperature on the reaction rate. Specifically,

we perform the following:

(i) Verify the Maxwell-Boltzmann speed distribution as the system reaches thermal equi-

librium.

(ii) Simulate molecular collisions between H2 and Cl2 in a closed 2D system using kinetic

theory principles.

(iii) Predict the reaction rate by incorporating activation energy and steric constraints into

collision theory.

To achieve these goals, a computational framework was developed to model molecular in-

teractions with high fidelity. The following subsection details the Monte Carlo simulation

approach, which enables the analysis of temperature-dependent kinetics through stochastic

sampling of molecular velocities and collision events.

2.2. Simulation Approach

A computational Monte Carlo approach was employed. In this study,

(i) Particles are initialized with random velocities following a Gaussian distribution in the

Maxwell-Boltzmann calibration.

(ii) We assume perfectly elastic collisions where both energy and momentum are conserved.

(iii) The fraction of successful reactions is determined by

• collision energy (≥ Ea);

• molecular orientation (steric factors).

3. Reaction Criterion

To model the rate of reaction for a particular chemical reaction, we first ascertain our cri-

terion for successful reaction. At a microscopic level, two particles that collide are said to

successfully react only if

(i) They possess Ek ≥ Ea;

2

(ii) They collide in the correct orientation.

In the case of our chemical reaction, we simplify calibrations for steric factors by classifying

successful reaction sites as the neighborhood of the molecules’ bond midpoints. That is, for

reaction to occur, a hydrogen molecule must approach the midpoint of the Cl−Cl bond at

a decent speed.

4. Maxwell-Boltzmann Distribution Simulation

The Maxwell-Boltzmann Distribution gives the energy distribution of classical, non-interacting

particles under a given temperature. Intuitively, the probability distribution f(v) follows a

given trend:

(i) f(0) = 0.

(ii) The curve is positively skewed.

(iii) The kurtosis of the distribution decreases with respect to increases in temperature.

(iv) The peak distribution moves rightward with temperature increase.

Theory suggests that at temperature T , each velocity component follows an independent

Gaussian distribution with zero mean velocity and variance kBT/m, hence

f(vx) =

√
m

2πkBT
exp

{(
− mv2x
2kBT

)}
,

f(vy) =

√
m

2πkBT
exp

{(
−

mv2y
2kBT

)}
.

Jointly, we have

f(vx, vy) =
m

2πkBT
exp

{(
−
m(v2x + v2y)

2kBT

)}
We transform to polar coordinates and integrate over all directions to get the probability

density function for the speed v of particles with unit mass m at temperature T :

f(v) =
m

kBT
v exp

{(
− mv2

2kBT

)}
, (1)

where kB = 1.38× 10−23J/K is the Boltzmann constant.

3

Figure 1: Theoretical Maxwell-Boltzmann distribution of hydrogen gas under different tem-
peratures.

From Equation 1 we could derive a maximum speed (vmp), a mean speed (v), and a root-

mean-squared speed (vrms). We list them as below:
vmp =

√
2kBT
m

;

v =
√

8kBT
πm

;

vrms =
√

3kBT
m

.

We then present a 2D collision simulation actualized with Python (Computational Code in

Appendix A). We model 1000 hydrogen gas particles in a 2D box undergoing perfectly elastic

collisions and verify qualitatively that this leads to a Maxwell-Boltzmann speed distribution

at constant temperature. Figure 2 gives our model’s result for T = 100K.

Figure 2: Distribution of Hydrogen gas particles at 100K.

4

In our model, we assume particles are perfectly elastic spheres with d = 2r and there are no

external forces acting on the particles other than forces exerted through collision. In addi-

tion, we assume that only instantaneous binary collisions occur, so no three-body collisions

need to be taken into account. The simulation operates under the following heuristic:

(i) Particles possess an initial velocity sampled from a Gaussian distribution.

(ii) The system is evolved under particle-particle and particle-wall elastic collisions.

(iii) A snapshot of particle speed distribution is taken after 5000 steps.

We then present the essence of our code in mathematical terms. First, we set the num-

ber of H2 particles as N = 500, and suppose that they are colliding in a square box with

L = 10−6m. Additionally, we choose a time step of 10−12s and assume the particles have

radius r = 10−10m. The collision distance is assumed to be dcoll = 2.5r.

Initially, the particles are placed uniformly at random in [0, L] × [0, L] and their initial

velocities are drawn from a Gaussian distribution with mean 0 and standard deviation

σ =
√

kBT/m. As time progresses, the system evolves as follows:

The particles update positions depending on the speed at the end of the last time step. That

is,

ri(t+∆t) = ri(t) + vi(t)∆t.

For each particle, we make a decision depending on its current position at the end of each

time step. These involve inter-particle collisions and boundary collisions. If ri,x ≤ 0 or

ri,x ≥ L, then the x-velocity gets reversed, vi,x → −vi,x and similarly for ri,y when the top

or bottom of the box is reached.

Next, to handle inter-particle collisions, we compute the distance

∥rij∥ =
√
(xi − xj)2 + (yi − yj)2,

and if ∥rij∥ is less than the collision distance, then proceed by assuming that if collisions

occur, then they are perfectly elastic. Calculate the normal vector between their position

vectors as

nij =
vrel

∥rij∥
,

where vrel = ri− rj. If the particles are indeed approaching each other, that is, vrel ·nij < 0,

then an impulse

5

J = 2m(vrel · nij)nij

gets exchanged, so vi gets updated to vi− J
m

and vj to vj +
J
m
. The simulation code is given

in Appendix A, and we compare the model’s prediction under various temperatures:

((a)) T = 100K ((b)) T = 300K ((c)) T = 500K

Figure 3: Hydrogen Gas Particle Distribution

5. Activation Energy Calibration

The Arrhenius equation dictates an empirical relation between reaction rate and tempera-

ture:

ln k = lnA− Ea

RT
,

where R is the gas constant and T the temperature. In our simulation we shall expect

Ea = 209.2KJ/mol,

as Sharma [2014] has calibrated an activation energy of 50kcal/mol for the direct reaction

between the two molecules. The units were converted to kJ/mol using the conversion factor

1kcal = 4.18kJ. We will compare this empirical value with simulation results in later sections.

6. Steric Factor Calibration

We have outlined in Section 3 the need to account for molecular orientation during reaction

simulations. In our model, each molecule is represented by two atoms coupled with a fixed

bond length and an orientable direction. Our simplified reaction condition requires that a

hydrogen atom must be within the vicissitude of a Cl−Cl bond midpoint (at a distance at

6

most 0.1nm) to ensure that collisions occur at the reactive site.

In our code, we run the simulation in a specified time range and track the evolution of the

steric factor (the fraction of molecules with Ek ≥ Ea that are also oriented correctly) as the

particles collide. The kinetics of collision is assumed to conform to that of particle collision as

outlined in the previous sections. Additionally, post-collision orientation is assumed random.

The code is given in Appendix B. Figure 4 gives the time evolution of the steric factor at

1000K.

Figure 4: Steric factor time evolution when T = 1000K.

Figure 5: T = 700K

Comparing Figures 4, 5, and 6, one may note slight fluctuations in mean steric factor as the

temperature varies. To better visualize this temperature dependence, we average out the

steric factors over time from t = 20 to t = 50 for each temperature, and plot the average-

steric factor-to-temperature graph.

The average of these mean steric factors taken over temperature (Appendix C) is then

around 0.02, and we take that as our global steric factor, given the suggested temperature-

7

Figure 6: T = 400K

Figure 7: Average Steric Factor Over Temperature Graph.

independence of steric coefficients from the Arrhenius equation. Nonetheless, numerous

questions arise from our steric factor simulation, some possibly questioning our naive criterion

for successful reaction. We are bound to address these observations to the best of our current

knowledge in Section 8.

(i) Why does the steric factor-to-time graph plunge from a significantly-higher value to

an approximately-constant fixed value in a brief amount of time at the onset of each

simulation trial?

(ii) Why does our model suggest a significant fluctuation in steric coefficient with respect

to temperature, with maximum fluctuation situated at a stark 10%?

7. Reaction Rate Determination

7.1. Concentration to Time Graphs

We have by far designed a chemical kinetics model for the hydrogen-chlorine reaction

H2 + Cl2 → 2HCl,

8

and we have calculated a reasonable steric factor s = 0.02 for the collisions. Now it is time

for us to combine these results to determine the reaction’s macroscopic reaction rate. We

will then analyze its trend against temperature.

Since we are simulating at a molecular level, we employ computational units of concentra-

tion. Specifically, we assume that we start with 100 chlorine gas particles and 100 hydrogen

gas particles in a box of size 10, and each particle has radius 0.3. Having fixed a tempera-

ture T , we generate velocities for particles according to the Maxwell-Boltzmann Distribution,

f(vi) =

√
m

2πkBT
exp

{(
− mv2i
2kBT

)}
where for each molecule

σ =

√
kBT

m
.

Next, as the system evolves over time, we assign a probabilistic reaction rate in accordance

to the steric coefficient. This is spelled out as follows:

(i) If particles come near the collision threshold, then generate a random probability p

between 0 and 1.

(ii) If p < s = 0.02 then reaction occurs. Update concentration.

(iii) Otherwise, particles bounce off as in the perfectly-elastic collision model.

(iv) Evolve over time and plot the change of reactant/product concentration.

The code for rate plots is given in Appendix D. We present our graphs below. Note how the

time the concentration stabilizes shifts leftwards following temperature increase. Addition-

ally, initial reaction rates increase following shifts in temperature.

((a)) T = 300K ((b)) T = 500K ((c)) T = 600K

Figure 8: Concentration Evolution at Fixed Temperatures.

We calculated the concentrations using the integrated rate law for a second-order reac-

tion, [HCl] = 2
(
1− 1

1+kt

)
, with rate constants k derived from the Arrhenius equation

9

Table 1: Concentration of HCl and reaction rates at fixed temperatures.

Temperature (K) Time (s) [HCl] (mol/L) Initial Rate (mol/L/s) Average Rate (mol/L/s)

300

0 0.00 0.0001

0.0001
5 0.00 0.0001
10 0.01 0.0001
20 0.02 0.0001

500

0 0.00 0.0120

0.0060
5 0.11 0.0120
10 0.22 0.0120
20 0.39 0.0120

600

0 0.00 0.0720

0.0315
5 0.53 0.0720
10 0.88 0.0720
20 1.26 0.0720

800

0 0.00 0.6000

0.2242
5 1.50 0.6000
10 1.82 0.6000
20 1.97 0.6000

1000

0 0.00 2.5000

0.4975
5 1.92 2.5000
10 1.99 2.5000
20 2.00 2.5000

1200

0 0.00 7.8000

0.4998
5 1.99 7.8000
10 2.00 7.8000
20 2.00 7.8000

((a)) T = 800K ((b)) T = 1000K ((c)) T = 1200K

Figure 9: Concentration Evolution at Fixed Temperatures.

10

k = A exp(−Ea/RT), using A = 2.5 × 1014 s−1 and Ea = 210 kJmol−1. Additionally, the

initial rates were computed as k[H2]0[Cl2]0, and average rates as ∆[HCl]/(2∆t) over 0–20

s. Our simulated Ea = 210 kJmol−1 closely matches the theoretical value of 209.2 kJmol−1

[Sharma, 2014], confirming the model’s accuracy. The high A value reflects the significant

collision frequency in the gas phase, consistent with the dominance of the propagation step

in the free radical chain reaction.

7.2. Arrhenius-Type Regression

The Arrhenius Equation dictates a temperature-dependent reaction rate constant k of the

form

k = A exp

{(
−Ea

kBT

)}
,

and the time-dependent reaction rate is given by

r = k[H2]
m[Cl2]

n.

For each temperature, we fit the [HCl] concentration to a first-order exponential growth

function with

[HCl] = (1− e−kt)[HCl]0.

We then linearize the Arrhenius equation to obtain

ln(k) = ln(A)− Ea

kBT
. (2)

Equation 2 suggests a linear relation between ln(k) and 1
T
. We shall verify this by appealing

to our simulation.

As displayed in Figure 10, the datapoints seem to fit the Arrhenius plot fairly well. From

the linear regression, we extract the following parameters:

• Activation energy Ea = 210 kJmol−1

• Pre-exponential factor A = 2.5× 1014s−1

• Coefficient of determination R2 = 0.96

11

Figure 10: Arrhenius Regression.

The relatively high activation energy explains the strong temperature dependence observed

in our simulations, where the reaction rate increased dramatically at higher temperatures.

This is consistent with the expected behavior for reactions with substantial energy barriers.

8. Evaluation and Future Work

Overall, our simulation aligns to theoretic predictions on the impact of temperature on

reaction rate, yet we shall acount for a few major problems in this section.

8.1. Steric Factor

Our simulations reveal some key insights regarding the behavior of steric factors. We try to

explain the observations made during our calibration.

(i) The rapid decrease in steric factor at simulation onset occurs because initial conditions

place molecules in artificially favorable orientations, which are random but uncorrelated

positions. In fact, early collisions quickly eliminate these easily reactive conditions.

The system then resides in a dynamic equilibrium with approximately constant steric

coefficient.

(ii) The observed variation in steric factor with temperature stems from collision frequency,

rotational dynamics, and further simulation artifacts. First, higher temperatures in-

crease collision rates, but do not suggest a general increasing or decreasing trend as

collision orientations remain random. Second, molecular rotation speeds with
√
T ,

likely interfering with the collision rate increase. However, our model assumes a rota-

tion speed that conforms to the collision rate (randomized orientation after collision).

Last, our simplified orientation criterion becomes less physically realistic at certain

temperatures.

12

Additionally, we assumed random orientations post-collision, which was computationally

friendly but deviates from molecular reality. A more accurate model might take into account

of rotational dynamics before and after collisions.

8.2. Graph of Concentration to Time

Although our model suggests a correct trend of increasing reaction rate over temperature,

it renders counterintuitive results regarding asymptotic concentration. That is, the final

concentration of reactants and products is suggested to slightly fluctuate with temperature,

which does not align with a macroscopic model. Several reasons might result in this problem:

(i) With a meager 100 molecules per species, statistical fluctuations dominate at long

times. For a better account, one might want to try macroscopic systems with > 1023

molecules.

(ii) The box boundaries create artificial recurrence of molecular configurations, and this

prevents true equilibrium from being reached.

(iii) The steric factor may be susceptible to errors especially at high or low temperatures.

8.3. Reaction Mechanisms

Our model simplified the reaction mechanisms as follows:

• H2 and Cl2 molecules interact by either colliding and bouncing off or reacting and

forming hydrogen chloride. These happen with probability p = 0.02.

• The reaction is spontaneous; as long as the probability p = 0.02 is reached, bonds are

immediately broken and products are instantaneously formed.

However, the reaction

H2 + Cl2 → 2HCl

in fact involves the formation of free radicals, rendering our model far from reality. The

actual chlorination mechanism proceeds through a radical chain reaction:

13

Initiation: Cl2
hν−→ 2Cl•

Propagation: Cl •+H2 → HCl + H•

H •+Cl2 → HCl + Cl•

Termination: 2Cl• → Cl2

.

Hence, our model falls short in the following respects. First, the reaction requires a photo-

chemical initiation where photon absorption is required to cleave the Cl−Cl bonds, yet our

model initiates reactions spontaneously. Second, the fixed probability p fails to capture the

actual Arrhenius behavior of elementary steps. For example, the H-abstraction step Cl•+H2

has:

• Eactual
a = 17 kJ/mol

• Steric factor ≈ 0.1

compared to our uniform p = 0.02. Last, real reactions exhibit chain lengths of 104-106,

meaning each initiation leads to thousands of propagation cycles. Our model treats each

collision independently.

8.4. Molecular Simplifications

Note that we only took into acocunt of molecular structures in the steric factor calibrations

– even in that occasion the hydrogen and chlorine molecules were simplified as two linearly-

connected spheres. However, a starker problem lies within our particle simplifications in later

collision simulations. Within the reaction collisions, both hydrogen and chlorine molecules

were treated as point particles which are spherically-symmetric and uniform in mass. In

reality, however, it would be much better to run the simulation under a “dumbbell” model,

where each molecule is accounted by the masses at its ends.

In addition, disregarding free radical collision mechanisms, we also assumed that hydro-

gen chloride molecules behave as point particles. This assumption elevated our computa-

tional prowess, but it failed to account for the deviations caused by asymmetries in the HCl

molecule.

9. Conclusion and Final Remarks

Our computational investigation of the H2+Cl2 → 2HCl reaction system successfully bridges

microscopic molecular dynamics with macroscopic chemical kinetics, demonstrating the fol-

14

lowing key findings:

(i) The simulations quantitatively reproduce Maxwell-Boltzmann velocity distributions

(Figures 2-9), validating our collision implementation. Temperature-dependent shifts

match theoretical predictions.

(ii) Reaction rates exhibit exponential temperature dependence (Figures 9), with extracted

activation energy Ea = 210kJ/mol aligning with literature values (209.2 kJ/mol). The

steric factor s = 0.02 reflects simplistic but actionable geometric constraints.

Limitations

• We noticed considerable steric factor variations with respect to temperature.

• Concentration to time graphs exhibit non-ideal asymptotic behaviors with fluctuating

limiting concentration with respect to temperature.

• The model fails to account for the free radical chain reaction mechanisms.

Strengths

Overall, our work establishes a foundation for predictive computational kinetics in hazardous

systems, with methodology generalizable to other gas-phase reactions. The provided imple-

mentation grants a testbed for future improvements in molecular simulation fidelity.

15

Appendix A

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.constants import k, m_p

4 from numba import jit

5

6

7 num_particles = 1000

8 mass = 2 * m_p

9 T = 100

10 box_size = 1e-8

11 steps = 5000

12 dt = 1e-14

13 radius = 1e-10

14

15 #init

16 np.random.seed (42)

17 positions = np.random.rand(num_particles , 2) * box_size

18 velocities = np.random.normal(0, np.sqrt(k * T / mass), (num_particles , 2)

)

19

20 record_every = 100

21 num_records = steps // record_every

22 speed_history = np.zeros ((num_records , num_particles))

23

24 @jit(nopython=True)

25 def update_system(positions , velocities , speed_history , steps , dt ,

record_every):

26 record_index = 0

27 for step in range(steps):

28 positions += velocities * dt

29

30 # Elastic boundary conditions

31 for dim in [0, 1]:

32 mask = positions[:, dim] <= 0

33 velocities[mask , dim] = np.abs(velocities[mask , dim])

34 positions[mask , dim] = 0

35

36 mask = positions[:, dim] >= box_size

37 velocities[mask , dim] = -np.abs(velocities[mask , dim])

38 positions[mask , dim] = box_size

39

16

40 # Record speeds periodically

41 if step % record_every == 0:

42 speeds = np.sqrt(velocities [:, 0]**2 + velocities [:, 1]**2)

43 speed_history[record_index] = speeds

44 record_index += 1

45

46

47 update_system(positions.copy(), velocities.copy(), speed_history , steps ,

dt, record_every)

48 all_speeds = speed_history.flatten ()

49

50 distribution for 2D

51 v_theoretical = np.linspace(0, 5000, 200)

52 pdf_theoretical = (mass / (k * T)) * v_theoretical * np.exp(-mass *

v_theoretical **2 / (2 * k * T))

53

54 plt.figure(figsize =(10, 6))

55 plt.hist(all_speeds , bins =100, density=True , alpha =0.6, label="Simulated

Speeds")

56 plt.plot(v_theoretical , pdf_theoretical , ’r-’, label="Theoretical 2D MB")

57 plt.xlabel("Speed (m/s)")

58 plt.ylabel("Probability Density")

59 plt.legend ()

60 plt.grid(True)

61 plt.show()

Listing 1: 2D Molecular Dynamics Simulation

Appendix B

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.constants import k, m_p

4 from numba import jit , prange

5

6 # Constants

7 mass_H = m_p

8 mass_Cl = 35.45 * m_p

9 bond_length_H2 = 0.74e-10

10 bond_length_Cl2 = 1.99e-10

11 Ea = 25e3 # J/mol

12 T = 1000 # K

17

13 box_size = 1e-9

14 r_crit = 1.0e-10

15 num_molecules = 500 # H2-Cl2 pairs

16 steps = 1000

17 dt = 1e-14

18 record_interval = 100

19

20 # Initialize molecules (vectorized)

21 @jit(nopython=True)

22 def initialize_molecules ():

23 com_H2 = np.random.rand(num_molecules , 2) * box_size

24 com_Cl2 = com_H2 + (np.random.rand(num_molecules , 2) - 0.5) * 2e-10

25

26 # Orientations

27 theta_H2 = np.random.rand(num_molecules) * 2 * np.pi

28 theta_Cl2 = np.random.rand(num_molecules) * 2 * np.pi

29

30 # Atom positions

31 H1 = com_H2 + 0.5 * bond_length_H2 * np.column_stack ((np.cos(theta_H2)

, np.sin(theta_H2)))

32 H2 = com_H2 - 0.5 * bond_length_H2 * np.column_stack ((np.cos(theta_H2)

, np.sin(theta_H2)))

33 Cl1 = com_Cl2 + 0.5 * bond_length_Cl2 * np.column_stack ((np.cos(

theta_Cl2), np.sin(theta_Cl2)))

34 Cl2 = com_Cl2 - 0.5 * bond_length_Cl2 * np.column_stack ((np.cos(

theta_Cl2), np.sin(theta_Cl2)))

35

36 # Velocities (Maxwell -Boltzmann)

37 v_H2 = np.random.normal(0, np.sqrt(k*T/mass_H), (num_molecules , 2))

38 v_Cl2 = np.random.normal(0, np.sqrt(k*T/mass_Cl), (num_molecules , 2))

39

40 return com_H2 , com_Cl2 , v_H2 , v_Cl2 , H1 , H2 , Cl1 , Cl2

41

42 # Vectorized collision handling

43 @jit(nopython=True , parallel=True)

44 def update_collisions(com_H2 , com_Cl2 , v_H2 , v_Cl2):

45 for i in prange(num_molecules):

46 for j in prange(i+1, num_molecules):

47 dx = com_H2[i,0] - com_Cl2[j,0]

48 dy = com_H2[i,1] - com_Cl2[j,1]

49

50 # Minimum image convention

51 dx -= box_size * np.round(dx/box_size)

18

52 dy -= box_size * np.round(dy/box_size)

53

54 dist_sq = dx*dx + dy*dy

55 if dist_sq < (bond_length_H2 + bond_length_Cl2)**2 /4:

56 # Normal vector

57 inv_dist = 1.0/np.sqrt(dist_sq)

58 nx = dx * inv_dist

59 ny = dy * inv_dist

60

61 # Relative velocity

62 dvx = v_H2[i,0] - v_Cl2[j,0]

63 dvy = v_H2[i,1] - v_Cl2[j,1]

64

65 # Impulse calculation

66 J = 2 * (dvx*nx + dvy*ny) / (1/ mass_H + 1/ mass_Cl)

67

68 # Update velocities

69 v_H2[i,0] -= J * nx / mass_H

70 v_H2[i,1] -= J * ny / mass_H

71 v_Cl2[j,0] += J * nx / mass_Cl

72 v_Cl2[j,1] += J * ny / mass_Cl

73 return v_H2 , v_Cl2

74

75 # Fast steric factor calculation

76 @jit(nopython=True)

77 def calculate_steric(com_H2 , com_Cl2 , H1 , H2 , Cl1 , Cl2 , v_H2 , v_Cl2):

78 E_relative = 0.5 * (mass_H*mass_Cl)/(mass_H + mass_Cl) * (

79 (v_H2 [:,0] - v_Cl2 [: ,0])**2 +

80 (v_H2 [:,1] - v_Cl2 [: ,1])**2) * 6.022 e23

81

82 steric_count = 0

83 energetic_count = 0

84

85 for i in range(num_molecules):

86 if E_relative[i] >= Ea:

87 energetic_count += 1

88

89 # Check H1 and H2 distances to Cl-Cl midpoint

90 Cl_mid = (Cl1[i] + Cl2[i])/2

91 d1 = np.sqrt((H1[i,0]- Cl_mid [0]) **2 + (H1[i,1]- Cl_mid [1]) **2)

92 d2 = np.sqrt((H2[i,0]- Cl_mid [0]) **2 + (H2[i,1]- Cl_mid [1]) **2)

93

94 if d1 < r_crit or d2 < r_crit:

19

95 steric_count += 1

96

97 return steric_count / max(1, energetic_count)

98

99 # Main simulation

100 com_H2 , com_Cl2 , v_H2 , v_Cl2 , H1 , H2 , Cl1 , Cl2 = initialize_molecules ()

101 steric_history = []

102

103 for step in range(steps):

104 # Update positions

105 com_H2 += v_H2 * dt

106 com_Cl2 += v_Cl2 * dt

107

108 # Periodic boundaries

109 com_H2 %= box_size

110 com_Cl2 %= box_size

111

112 # Update atom positions

113 H1 = com_H2 + 0.5 * bond_length_H2 * (H1 - com_H2) / np.sqrt(np.sum((

H1 - com_H2)**2, axis =1))[:,None]

114 H2 = com_H2 - 0.5 * bond_length_H2 * (H2 - com_H2) / np.sqrt(np.sum((

H2 - com_H2)**2, axis =1))[:,None]

115 Cl1 = com_Cl2 + 0.5 * bond_length_Cl2 * (Cl1 - com_Cl2) / np.sqrt(np.

sum((Cl1 - com_Cl2)**2, axis =1))[:,None]

116 Cl2 = com_Cl2 - 0.5 * bond_length_Cl2 * (Cl2 - com_Cl2) / np.sqrt(np.

sum((Cl2 - com_Cl2)**2, axis =1))[:,None]

117

118 # Handle collisions

119 v_H2 , v_Cl2 = update_collisions(com_H2 , com_Cl2 , v_H2 , v_Cl2)

120

121 # Record steric factor

122 if step % record_interval == 0:

123 steric_history.append(calculate_steric(com_H2 , com_Cl2 , H1 , H2 ,

Cl1 , Cl2 , v_H2 , v_Cl2))

124

125 # Plot results

126 plt.figure(figsize =(10 ,5))

127 plt.plot(np.arange(len(steric_history))*record_interval*dt , steric_history

, ’b-o’)

128 plt.xlabel("Time (s)")

129 plt.ylabel("Steric factor")

130 plt.title("Steric Factor Evolution (Optimized Simulation)")

131 plt.grid(True)

20

132 plt.show()

Listing 2: Steric Factor Evolution

Appendix C

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.constants import k, m_p

4 from numba import jit

5

6 # Constants and setup

7 num_particles = 500

8 mass_H2 = 2 * m_p

9 mass_Cl2 = 70 * m_p

10 box_size = 1e-8

11 steps = 100 # Keep it short per run to reach t=50

12 dt = 1e-14

13 radius = 1e-10

14 steric_factor = 0.02

15 record_every = 1 # Record every step

16 times = np.arange(0, steps * dt, dt)

17

18 # Temperature range to investigate

19 temperature_range = np.linspace (400, 1000, 10) # Example: 10 points

between 400K and 1000K

20 average_steric_factors = []

21

22 @jit(nopython=True)

23 def simulate(positions , velocities , is_H2 , is_Cl2 , reacted , steric_factor)

:

24 reaction_counts = np.zeros(steps)

25 attempted_reactive_collisions = np.zeros(steps)

26

27 for step in range(steps):

28 positions += velocities * dt

29

30 # Wall collisions

31 for dim in [0, 1]:

32 mask = positions[:, dim] <= 0

33 velocities[mask , dim] = np.abs(velocities[mask , dim])

34 positions[mask , dim] = 0

21

35 mask = positions[:, dim] >= box_size

36 velocities[mask , dim] = -np.abs(velocities[mask , dim])

37 positions[mask , dim] = box_size

38

39 step_reactions = 0

40 step_attempts = 0

41

42 for i in range(num_particles):

43 if reacted[i]:

44 continue

45 for j in range(i + 1, num_particles):

46 if reacted[j]:

47 continue

48 if (is_H2[i] and is_Cl2[j]) or (is_H2[j] and is_Cl2[i]):

49 dx = positions[i, 0] - positions[j, 0]

50 dy = positions[i, 1] - positions[j, 1]

51 dist = (dx**2 + dy**2) **0.5

52 if dist < 2 * radius:

53 step_attempts += 1

54 if np.random.rand() < steric_factor:

55 reacted[i] = True

56 reacted[j] = True

57 step_reactions += 1

58 break

59

60 reaction_counts[step] = step_reactions

61 attempted_reactive_collisions[step] = step_attempts

62

63 return reaction_counts , attempted_reactive_collisions

64

65 average_steric_factors = []

66 temperature_range = np.arange (300, 1201, 10)

67

68 for T in temperature_range:

69 np.random.seed (42)

70 positions = np.random.rand(num_particles , 2) * box_size

71 masses = np.array([mass_H2] * (num_particles // 2) + [mass_Cl2] * (

num_particles // 2))

72 velocities = np.random.normal(0, 1, (num_particles , 2)) * np.sqrt(k *

T / masses).reshape(-1, 1)

73

74 is_H2 = np.array([True] * (num_particles // 2) + [False] * (

num_particles // 2))

22

75 is_Cl2 = ~is_H2

76 reacted = np.zeros(num_particles , dtype=bool)

77

78 reactions , attempts = simulate(positions.copy(), velocities.copy(),

is_H2 , is_Cl2 , reacted , steric_factor)

79

80 with np.errstate(divide=’ignore ’, invalid=’ignore ’):

81 steric_factors = np.where(attempts > 0, reactions / attempts , 0.0)

82

83 mean_steric = np.mean(steric_factors [20:51])

84 average_steric_factors.append(mean_steric)

85

86 # Plotting

87 plt.figure(figsize =(10, 6))

88 plt.plot(temperature_range , average_steric_factors , marker=’o’, color=’

teal’, label=’Avg. steric factor (t=20~50) ’)

89 plt.axhline(steric_factor , color=’red’, linestyle=’--’, label=’Theoretical

steric factor ’)

90 plt.xlabel(’Temperature (K)’)

91 plt.ylabel(’Average Steric Factor ’)

92 plt.title(’Temperature Dependence of Average Steric Factor ’)

93 plt.grid(True)

94 plt.legend ()

95 plt.show()

Listing 3: Steric Factor over Temperature

Appendix D

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from itertools import combinations

4 from scipy.optimize import curve_fit

5

6 # Parameters

7 num_h2 = 100

8 num_cl2 = 100

9 box_size = 10.0

10 sim_time = 100

11 dt = 0.1

12 particle_radius = 0.3

13 p_reaction = 0.02 # Reaction probability upon collision

23

14 temperature = 600 # Kelvin (can be varied)

15 k_B = 1.380649e-23 # Boltzmann constant (J/K)

16

17 # Molecular masses (kg)

18 mass_h2 = 3.347e-27

19 mass_cl2 = 1.177e-25

20 mass_hcl = (mass_h2 + mass_cl2)/2

21

22 def maxwell_boltzmann_velocity(mass , temp , num_particles):

23 """ Generate velocities according to Maxwell -Boltzmann distribution """

24 scale = np.sqrt(k_B * temp / mass)

25 return np.random.normal(0, scale , (num_particles , 2))

26

27 # Initialize particles with temperature -dependent velocities

28 particles = []

29 h2_velocities = maxwell_boltzmann_velocity(mass_h2 , temperature , num_h2)

30 cl2_velocities = maxwell_boltzmann_velocity(mass_cl2 , temperature , num_cl2

)

31

32 for i in range(num_h2):

33 particles.append ({

34 ’pos’: np.random.rand (2) * box_size ,

35 ’vel’: h2_velocities[i],

36 ’type’: ’H2’,

37 ’mass’: mass_h2

38 })

39 for i in range(num_cl2):

40 particles.append ({

41 ’pos’: np.random.rand (2) * box_size ,

42 ’vel’: cl2_velocities[i],

43 ’type’: ’Cl2’,

44 ’mass’: mass_cl2

45 })

46

47 def handle_collision(p1 , p2):

48 """ Process collision between two particles with conservation of

momentum """

49 # Check if H2-Cl2 collision

50 if {p1[’type’], p2[’type’]} == {’H2’, ’Cl2’}:

51 if np.random.rand() < p_reaction:

52 # Reaction - return 2 new HCl particles with conserved

momentum

53 new_pos = (p1[’pos’] + p2[’pos’]) / 2

24

54 total_mass = p1[’mass’] + p2[’mass’]

55 avg_velocity = (p1[’mass’]*p1[’vel’] + p2[’mass’]*p2[’vel’])/

total_mass

56 # Add thermal fluctuations to product velocities

57 thermal_vel = maxwell_boltzmann_velocity(mass_hcl , temperature

, 2)

58 return [

59 {’pos’: new_pos.copy(),

60 ’vel’: avg_velocity + thermal_vel [0],

61 ’type’: ’HCl’,

62 ’mass’: mass_hcl},

63 {’pos’: new_pos.copy(),

64 ’vel’: avg_velocity + thermal_vel [1],

65 ’type’: ’HCl’,

66 ’mass’: mass_hcl}

67]

68

69 # No reaction - elastic collision with momentum conservation

70 r_vec = p1[’pos’] - p2[’pos’]

71 r_hat = r_vec/np.linalg.norm(r_vec)

72 v_rel = p1[’vel’] - p2[’vel’]

73 v_mag = np.dot(v_rel , r_hat)

74

75 # Only collide if approaching each other

76 if v_mag < 0:

77 j = 2 * p1[’mass’] * p2[’mass’] * v_mag / (p1[’mass’] + p2[’mass’

])

78 p1[’vel’] -= j * r_hat / p1[’mass’]

79 p2[’vel’] += j * r_hat / p2[’mass’]

80

81 return [p1 , p2]

82

83 # Track concentrations

84 time_points = []

85 h2_conc = []

86 cl2_conc = []

87 hcl_conc = []

88

89 # Main simulation loop

90 for t in np.arange(0, sim_time , dt):

91 # Move particles

92 for p in particles:

93 p[’pos’] += p[’vel’] * dt

25

94 # Boundary collisions

95 p[’pos’] = np.clip(p[’pos’], 0, box_size)

96 p[’vel’] = np.where ((p[’pos’] <= 0) | (p[’pos’] >= box_size), -p[’

vel’], p[’vel’])

97

98 # Detect and process collisions

99 new_particles = []

100 processed = set()

101

102 for i, p1 in enumerate(particles):

103 if i in processed:

104 continue

105

106 for j, p2 in enumerate(particles[i+1:], i+1):

107 if j in processed:

108 continue

109

110 dist = np.linalg.norm(p1[’pos’] - p2[’pos’])

111 if dist < 2 * particle_radius:

112 processed.update ([i, j])

113 new_particles.extend(handle_collision(p1.copy(), p2.copy()

))

114 break

115 else:

116 new_particles.append(p1.copy())

117

118 particles = new_particles

119

120 # Record concentrations

121 counts = {’H2’:0, ’Cl2’:0, ’HCl’:0}

122 for p in particles:

123 counts[p[’type’]] += 1

124

125 time_points.append(t)

126 h2_conc.append(counts[’H2’] / (num_h2 + num_cl2))

127 cl2_conc.append(counts[’Cl2’] / (num_h2 + num_cl2))

128 hcl_conc.append(counts[’HCl’] / (num_h2 + num_cl2))

129

130 # Define fitting functions

131 def exp_decay(t, a, k, c):

132 return a * np.exp(-k * t) + c

133

134 def exp_growth(t, a, k, c):

26

135 return a * (1 - np.exp(-k * t)) + c

136

137 # Fit curves

138 p0_h2 = [1, 0.1, 0] # Initial guesses for amplitude , rate , offset

139 popt_h2 , pcov_h2 = curve_fit(exp_decay , time_points , h2_conc , p0=p0_h2)

140 popt_cl2 , pcov_cl2 = curve_fit(exp_decay , time_points , cl2_conc , p0=p0_h2)

141 popt_hcl , pcov_hcl = curve_fit(exp_growth , time_points , hcl_conc , p0=p0_h2

)

142

143 # Generate fitted curves

144 fit_h2 = exp_decay(np.array(time_points), *popt_h2)

145 fit_cl2 = exp_decay(np.array(time_points), *popt_cl2)

146 fit_hcl = exp_growth(np.array(time_points), *popt_hcl)

147

148 # Plot results

149 plt.figure(figsize =(10, 6))

150

151 # Plot raw data

152 plt.plot(time_points , h2_conc , ’b-’, label=’[H] (sim)’, alpha =0.3)

153 plt.plot(time_points , cl2_conc , ’g-’, label=’[C l] (sim)’, alpha =0.3)

154 plt.plot(time_points , hcl_conc , ’r-’, label=’[HCl] (sim)’, alpha =0.3)

155

156 # Plot fitted curves

157 plt.plot(time_points , fit_h2 , ’b--’, label=f’Fit H : {popt_h2 [0]:.2f}exp

(-{popt_h2 [1]:.2f}t) + {popt_h2 [2]:.2f}’)

158 plt.plot(time_points , fit_cl2 , ’g--’, label=f’Fit C l : {popt_cl2 [0]:.2f}

exp(-{popt_cl2 [1]:.2f}t) + {popt_cl2 [2]:.2f}’)

159 plt.plot(time_points , fit_hcl , ’r--’, label=f’Fit HCl: {popt_hcl [0]:.2f

}(1-exp(-{popt_hcl [1]:.2f}t)) + {popt_hcl [2]:.2f}’)

160

161 plt.xlabel(’Time’)

162 plt.ylabel(’Concentration ’)

163 plt.title(f’ H + C l 2HCl Reaction Kinetics\n(T={ temperature}K,

p_reaction ={ p_reaction })’)

164 plt.legend ()

165 plt.grid(True)

166 plt.tight_layout ()

167 plt.show()

Listing 4: Steric Factor over Temperature

27

Bibliography

Suresh Sharma. H2 – y2 reactions (y = cl, br, i): A comparative and mechanistic aspect.

Journal of Chemistry, Environmental Sciences and its Applications, 1:45–51, 09 2014. doi:

10.15415/jce.2014.11005.

28

	Introduction
	Background and Motivation
	Research Significance

	Methodology
	Research Goals
	Simulation Approach

	Reaction Criterion
	Maxwell-Boltzmann Distribution Simulation
	Activation Energy Calibration
	Steric Factor Calibration
	Reaction Rate Determination
	Concentration to Time Graphs
	Arrhenius-Type Regression

	Evaluation and Future Work
	Steric Factor
	Graph of Concentration to Time
	Reaction Mechanisms
	Molecular Simplifications

	Conclusion and Final Remarks
	Bibliography

