Molecular Dynamics Simulations of the Temperature
Dependence of Rate Constants for the Hy + Cly — 2HCI
(Gas-Phase Reaction

Xinyan Lola Huang

1. Introduction

1.1. Background and Motivation

The rate of a chemical reaction is fundamental to understanding and controlling chemical
processes across science, biology, industry, and common-day life. The reaction between hy-
drogen gas (H;) and chlorine gas (Cls) to form hydrogen chloride (HC!) under sources of

UV-light is a classic example of a bimolecular gas-phase reaction.

Hy+Cly = 2HCI.

While the Arrhenius equation provides an empirical relationship between temperature and
reaction rate, experimental tests are deemed dangerous under the presence of toxic chlorine
gas. Additionally, mixtures of chlorine and hydrogen are lammable and potentially-explosive
within a known concentration range, hence further hindering experimental tests. The chal-
lenges associated with direct experimentation highlight the need for alternative approaches

such as computational modeling to determine reaction rates without compromising safety.

1.2. Research Significance

Our research bridges the gap between microscopic molecular dynamics and macroscopic

reaction rate, demonstrating and verifying:
(i) The emergence of Maxwell-Boltzmann Distribution from particle collisions;
(ii) The positive relation between chlorine-hydrogen reaction rate and temperature;

(iii) The robustness of computational methods in predicting reaction rate.

2. Methodology

Building upon our goals as introduced earlier, this section outlines the computational frame-
work employed to explore the temperature-dependent kinetics of the aforementioned gas-
phase combination reaction. Our model integrates principles from statistical mechanics and
collision theory, enabling a detailed examination of molecular interactions under varying

thermal conditions.

2.1. Research Goals

The primary objective is to simulate the reaction between hydrogen (Hy) and chlorine (Cly)
at a molecular level to determine the impact of temperature on the reaction rate. Specifically,

we perform the following:

(i) Verify the Maxwell-Boltzmann speed distribution as the system reaches thermal equi-

librium.

(ii) Simulate molecular collisions between Hy and Cly in a closed 2D system using kinetic

theory principles.

(iii) Predict the reaction rate by incorporating activation energy and steric constraints into

collision theory.

To achieve these goals, a computational framework was developed to model molecular in-
teractions with high fidelity. The following subsection details the Monte Carlo simulation
approach, which enables the analysis of temperature-dependent kinetics through stochastic

sampling of molecular velocities and collision events.

2.2. Simulation Approach
A computational Monte Carlo approach was employed. In this study,

(i) Particles are initialized with random velocities following a Gaussian distribution in the

Maxwell-Boltzmann calibration.
(ii) We assume perfectly elastic collisions where both energy and momentum are conserved.
(iii) The fraction of successful reactions is determined by

e collision energy (> E,);

e molecular orientation (steric factors).

3. Reaction Criterion

To model the rate of reaction for a particular chemical reaction, we first ascertain our cri-
terion for successful reaction. At a microscopic level, two particles that collide are said to

successfully react only if

(i) They possess Ey > Ej;

(ii) They collide in the correct orientation.

In the case of our chemical reaction, we simplify calibrations for steric factors by classifying
successful reaction sites as the neighborhood of the molecules’ bond midpoints. That is, for
reaction to occur, a hydrogen molecule must approach the midpoint of the C'l — Cl bond at

a decent speed.

4. Maxwell-Boltzmann Distribution Simulation

The Maxwell-Boltzmann Distribution gives the energy distribution of classical, non-interacting
particles under a given temperature. Intuitively, the probability distribution f(v) follows a

given trend:

(i) £(0)=0.

(ii) The curve is positively skewed.
(iii) The kurtosis of the distribution decreases with respect to increases in temperature.
(iv) The peak distribution moves rightward with temperature increase.

Theory suggests that at temperature 1", each velocity component follows an independent

Gaussian distribution with zero mean velocity and variance kgT'/m, hence
f(on) m mu?
Vg) = €x -)
27'(']{?BT P QkBT

fvy) = \/Eexp{ <_ 272:1;) }

m m(vs +v;)
o vy) = 50T eXp{ <_ kT)}

We transform to polar coordinates and integrate over all directions to get the probability

Jointly, we have

density function for the speed v of particles with unit mass m at temperature 7"

)

where kg = 1.38 x 10723J /K is the Boltzmann constant.

Maxwell-Boltzmann Speed Distribution for Hydrogen Gas (H;)

0.0010
— T=100K

200 K — T=300K
— T=500K
— T=1000K
0.0008

0.0006

0.0004

000 K

Probability Density (s/m)

0.0002

0.0000 U U T T
0 1000 2000 3000 4000 5000

Speed (m/s)

Figure 1: Theoretical Maxwell-Boltzmann distribution of hydrogen gas under different tem-
peratures.

From Equation 1 we could derive a maximum speed (v,,,), a mean speed (7), and a root-

mean-squared speed (v,,s). We list them as below:

4
_ 2kpT .
Ump = m
— 8kpT .
§0 =4/ e
_ 3kgT
Urms - m
\

We then present a 2D collision simulation actualized with Python (Computational Code in
Appendix A). We model 1000 hydrogen gas particles in a 2D box undergoing perfectly elastic
collisions and verify qualitatively that this leads to a Maxwell-Boltzmann speed distribution

at constant temperature. Figure 2 gives our model’s result for 7" = 100K.

m Simulated Speeds

0.0012 + —— Theoretical 2D MB

0.0010 +

0.0008

0.0006

Probability Density

0.0004

0.0002 4

0.0000 -

Speed (m/s)

Figure 2: Distribution of Hydrogen gas particles at 100K.

In our model, we assume particles are perfectly elastic spheres with d = 2r and there are no
external forces acting on the particles other than forces exerted through collision. In addi-
tion, we assume that only instantaneous binary collisions occur, so no three-body collisions

need to be taken into account. The simulation operates under the following heuristic:

(i) Particles possess an initial velocity sampled from a Gaussian distribution.
(ii) The system is evolved under particle-particle and particle-wall elastic collisions.
(iii) A snapshot of particle speed distribution is taken after 5000 steps.

We then present the essence of our code in mathematical terms. First, we set the num-
ber of H, particles as N = 500, and suppose that they are colliding in a square box with
L = 10~%m. Additionally, we choose a time step of 107125 and assume the particles have
radius 7 = 107%m. The collision distance is assumed to be do = 2.57.

Initially, the particles are placed uniformly at random in [0, L] x [0, L] and their initial
velocities are drawn from a Gaussian distribution with mean 0 and standard deviation
o= \/m. As time progresses, the system evolves as follows:

The particles update positions depending on the speed at the end of the last time step. That

is,

ri(t+ At) = r;(t) + v;(t) At.

For each particle, we make a decision depending on its current position at the end of each
time step. These involve inter-particle collisions and boundary collisions. If r;, < 0 or
rie > L, then the z-velocity gets reversed, v; , — —v;, and similarly for r; , when the top
or bottom of the box is reached.

Next, to handle inter-particle collisions, we compute the distance

sl = /(i —)2 + (s — w5)2,
and if |r;;|| is less than the collision distance, then proceed by assuming that if collisions
occur, then they are perfectly elastic. Calculate the normal vector between their position
vectors as
n;; = &7
35
where v, = r; —r;. If the particles are indeed approaching each other, that is, vy -n;; < 0,

then an impulse

J = 2m(Vrel . nlj)n”

gets exchanged, so v; gets updated to v; — % and v; to v; + % The simulation code is given

in Appendix A, and we compare the model’s prediction under various temperatures:

nnnnn

nnnnn

aaaaaa

uuuuuuuuuu

aaaaaaaaaaaaaaaaa
o wo oz o s seo o e a0 w0 400 500

((a)) T = 100K ((b)) T = 300K ((c) T _ 500K

Figure 3: Hydrogen Gas Particle Distribution

5. Activation Energy Calibration

The Arrhenius equation dictates an empirical relation between reaction rate and tempera-

ture:

E
Ink=InA-—=
n n 7T

where R is the gas constant and T" the temperature. In our simulation we shall expect

E, = 209.2KJ/mol,

as Sharma [2014] has calibrated an activation energy of 50kcal/mol for the direct reaction
between the two molecules. The units were converted to kJ/mol using the conversion factor

lkcal = 4.18kJ. We will compare this empirical value with simulation results in later sections.

6. Steric Factor Calibration

We have outlined in Section 3 the need to account for molecular orientation during reaction
simulations. In our model, each molecule is represented by two atoms coupled with a fixed
bond length and an orientable direction. Our simplified reaction condition requires that a

hydrogen atom must be within the vicissitude of a Cl — Cl bond midpoint (at a distance at

6

most 0.1nm) to ensure that collisions occur at the reactive site.

In our code, we run the simulation in a specified time range and track the evolution of the
steric factor (the fraction of molecules with Ej > FE, that are also oriented correctly) as the
particles collide. The kinetics of collision is assumed to conform to that of particle collision as
outlined in the previous sections. Additionally, post-collision orientation is assumed random.
The code is given in Appendix B. Figure 4 gives the time evolution of the steric factor at
1000K.

Evolution of Effective Steric Factor Over Time

0.034 ~-- Theoretical Steric Factor
0.032
0.030

5 o028

2 o026

&
®
:
£ 0024
&
0,022

0.020

0.018

Time (ps)

Figure 4: Steric factor time evolution when 7" = 1000K.

Evolution of Effective Steric Factor Over Time

0.0400 ~=- Theoretical Steric Factor

0.0375

0.0350
:S: 0.0325
8

g
£ 0.0300

& 00275
&

0.0250

0.0200

Time (ps)

Figure 5: T' = 700K

Comparing Figures 4, 5, and 6, one may note slight fluctuations in mean steric factor as the
temperature varies. To better visualize this temperature dependence, we average out the
steric factors over time from ¢ = 20 to t = 50 for each temperature, and plot the average-

steric factor-to-temperature graph.

The average of these mean steric factors taken over temperature (Appendix C) is then

around 0.02, and we take that as our global steric factor, given the suggested temperature-

Evolution of Effective Steric Factor Over Time

0.028 - -~ Theoretical Steric Factor
0.026
0.024

5 0.022

0020 AR e

0.018

Effective Steric Fa

0.016

0.014

0.012

o 10 20 30 40 50
Time (ps)

Figure 6: T' = 400K

Temperature Dependence of Effective Steric Factor
--- Theoretical Steric Factor

i AM\MAMM“M\ A .l/\/\M M(
I\JHW “\/VVV\/W UL T

00

Average Effective Steric Factor (10-50 ps)

800
Temperature (K)

Figure 7: Average Steric Factor Over Temperature Graph.

independence of steric coefficients from the Arrhenius equation. Nonetheless, numerous
questions arise from our steric factor simulation, some possibly questioning our naive criterion
for successful reaction. We are bound to address these observations to the best of our current

knowledge in Section 8.

(i) Why does the steric factor-to-time graph plunge from a significantly-higher value to
an approximately-constant fixed value in a brief amount of time at the onset of each

simulation trial?

(ii) Why does our model suggest a significant fluctuation in steric coefficient with respect

to temperature, with maximum fluctuation situated at a stark 10%7?

7. Reaction Rate Determination

7.1. Concentration to Time Graphs

We have by far designed a chemical kinetics model for the hydrogen-chlorine reaction

Hy + Cly — 2HCI,

and we have calculated a reasonable steric factor s = 0.02 for the collisions. Now it is time
for us to combine these results to determine the reaction’s macroscopic reaction rate. We
will then analyze its trend against temperature.

Since we are simulating at a molecular level, we employ computational units of concentra-
tion. Specifically, we assume that we start with 100 chlorine gas particles and 100 hydrogen
gas particles in a box of size 10, and each particle has radius 0.3. Having fixed a tempera-

ture T, we generate velocities for particles according to the Maxwell-Boltzmann Distribution,

m muv?
1) =\ epnT eXp{ (_Qk:BT) }

| kgT
o=1\—
m

Next, as the system evolves over time, we assign a probabilistic reaction rate in accordance

where for each molecule

to the steric coefficient. This is spelled out as follows:

(i) If particles come near the collision threshold, then generate a random probability p

between 0 and 1.
(ii) If p < s = 0.02 then reaction occurs. Update concentration.
(iii) Otherwise, particles bounce off as in the perfectly-elastic collision model.
(iv) Evolve over time and plot the change of reactant/product concentration.

The code for rate plots is given in Appendix D. We present our graphs below. Note how the
time the concentration stabilizes shifts leftwards following temperature increase. Addition-

ally, initial reaction rates increase following shifts in temperature.

4 st
4 i 0
Time (5)

((a)) T = 300K ((b)) T = 500K ((¢)) T = 600K

Figure 8: Concentration Evolution at Fixed Temperatures.

We calculated the concentrations using the integrated rate law for a second-order reac-

tion, [HCI = 2(1— with rate constants k derived from the Arrhenius equation

o)

Table 1: Concentration of HCI and reaction rates at fixed temperatures.

Temperature (K) Time (s) [HCI] (mol/L) Initial Rate (mol/L/s) Average Rate (mol/L/s)

0 0.00 0.0001
5 0.00 0.0001

300 10 0.01 0.0001 0-0001
20 0.02 0.0001
0 0.00 0.0120
5 0.11 0.0120

500 10 0.22 0.0120 0.0060
20 0.39 0.0120
0 0.00 0.0720
5 0.53 0.0720

600 10 0.88 0.0720 0.0315
20 1.26 0.0720
0 0.00 0.6000
5 1.50 0.6000

800 10 1.82 0.6000 0.2242
20 1.97 0.6000
0 0.00 2.5000
5 1.92 2.5000

1000 10 1.99 2.5000 0.4975
20 2.00 2.5000
0 0.00 7.8000
5 1.99 7.8000

1200 10 2.00 7.8000 0.4998
20 2.00 7.8000

Time (s) :

((a)) T = 800K ((b)) T = 1000K ((c)) T = 1200K

Figure 9: Concentration Evolution at Fixed Temperatures.

10

k = Aexp(—E,/RT), using A = 2.5 x 10"s™! and F, = 210kJmol . Additionally, the
initial rates were computed as k[H|o[Clo)o, and average rates as A[HCI]/(2At) over 0-20
s. Our simulated E, = 210kJmol ™! closely matches the theoretical value of 209.2kJ mol ™
[Sharma, 2014], confirming the model’s accuracy. The high A value reflects the significant
collision frequency in the gas phase, consistent with the dominance of the propagation step

in the free radical chain reaction.

7.2. Arrhenius-Type Regression

The Arrhenius Equation dictates a temperature-dependent reaction rate constant k of the

e (7))

and the time-dependent reaction rate is given by

form

r = k’[HQ]m[CZQ]n

For each temperature, we fit the [HCI] concentration to a first-order exponential growth

function with

[HCI] = (1 — e *)[HCl],.

We then linearize the Arrhenius equation to obtain

T T (2)

Equation 2 suggests a linear relation between In(k) and % We shall verify this by appealing

to our simulation.

As displayed in Figure 10, the datapoints seem to fit the Arrhenius plot fairly well. From

the linear regression, we extract the following parameters:

e Activation energy E, = 210kJ mol™*
e Pre-exponential factor A = 2.5 x 1014s~!

e Coefficient of determination R? = 0.96

11

Reaction Progress at Different Temperatures Arrhenius Plot

081 & ® Simulation Data
Arrhenius Fit

— Ea =210 ky/mol
A =8.85e-01

In(k)

— 300K -16
— 400K
—— 500K

600K 18

700K
0.0 — 800K

00 25 50 75 100 125 150 175 200 0.0015 0.0020 0.0025 0.0030
Time (s) UT (K

Figure 10: Arrhenius Regression.

The relatively high activation energy explains the strong temperature dependence observed
in our simulations, where the reaction rate increased dramatically at higher temperatures.

This is consistent with the expected behavior for reactions with substantial energy barriers.

8. Evaluation and Future Work

Overall, our simulation aligns to theoretic predictions on the impact of temperature on

reaction rate, yet we shall acount for a few major problems in this section.

8.1. Steric Factor

Our simulations reveal some key insights regarding the behavior of steric factors. We try to

explain the observations made during our calibration.

(i) The rapid decrease in steric factor at simulation onset occurs because initial conditions
place molecules in artificially favorable orientations, which are random but uncorrelated
positions. In fact, early collisions quickly eliminate these easily reactive conditions.
The system then resides in a dynamic equilibrium with approximately constant steric

coefficient.

(ii) The observed variation in steric factor with temperature stems from collision frequency,
rotational dynamics, and further simulation artifacts. First, higher temperatures in-
crease collision rates, but do not suggest a general increasing or decreasing trend as
collision orientations remain random. Second, molecular rotation speeds with /7,
likely interfering with the collision rate increase. However, our model assumes a rota-
tion speed that conforms to the collision rate (randomized orientation after collision).
Last, our simplified orientation criterion becomes less physically realistic at certain

temperatures.

12

Additionally, we assumed random orientations post-collision, which was computationally
friendly but deviates from molecular reality. A more accurate model might take into account

of rotational dynamics before and after collisions.

8.2. Graph of Concentration to Time

Although our model suggests a correct trend of increasing reaction rate over temperature,
it renders counterintuitive results regarding asymptotic concentration. That is, the final
concentration of reactants and products is suggested to slightly fluctuate with temperature,

which does not align with a macroscopic model. Several reasons might result in this problem:

(i) With a meager 100 molecules per species, statistical fluctuations dominate at long
times. For a better account, one might want to try macroscopic systems with > 10%

molecules.

(ii) The box boundaries create artificial recurrence of molecular configurations, and this

prevents true equilibrium from being reached.

(iii) The steric factor may be susceptible to errors especially at high or low temperatures.

8.3. Reaction Mechanisms

Our model simplified the reaction mechanisms as follows:

e Hy; and Cly molecules interact by either colliding and bouncing off or reacting and

forming hydrogen chloride. These happen with probability p = 0.02.

e The reaction is spontaneous; as long as the probability p = 0.02 is reached, bonds are

immediately broken and products are instantaneously formed.

However, the reaction

H,; + Cly, — 2HCI

in fact involves the formation of free radicals, rendering our model far from reality. The

actual chlorination mechanism proceeds through a radical chain reaction:

13

Initiation: Cl, I 9Cle
Propagation: Cle +Hy — HCI + He
H e +Cl, — HCl+ Clo

Termination: 2Cle — Cl,

Hence, our model falls short in the following respects. First, the reaction requires a photo-
chemical initiation where photon absorption is required to cleave the Cl — Cl bonds, yet our
model initiates reactions spontaneously. Second, the fixed probability p fails to capture the
actual Arrhenius behavior of elementary steps. For example, the H-abstraction step Cle +H,

has:

o F<mal = 17 kJ/mol

e Steric factor ~ 0.1

compared to our uniform p = 0.02. Last, real reactions exhibit chain lengths of 10%-106,
meaning each initiation leads to thousands of propagation cycles. Our model treats each

collision independently.

8.4. Molecular Simplifications

Note that we only took into acocunt of molecular structures in the steric factor calibrations
— even in that occasion the hydrogen and chlorine molecules were simplified as two linearly-
connected spheres. However, a starker problem lies within our particle simplifications in later
collision simulations. Within the reaction collisions, both hydrogen and chlorine molecules
were treated as point particles which are spherically-symmetric and uniform in mass. In
reality, however, it would be much better to run the simulation under a “dumbbell” model,
where each molecule is accounted by the masses at its ends.

In addition, disregarding free radical collision mechanisms, we also assumed that hydro-
gen chloride molecules behave as point particles. This assumption elevated our computa-
tional prowess, but it failed to account for the deviations caused by asymmetries in the HCI

molecule.

9. Conclusion and Final Remarks

Our computational investigation of the Hy+Cl; — 2HCI reaction system successfully bridges

microscopic molecular dynamics with macroscopic chemical kinetics, demonstrating the fol-

14

lowing key findings:

(i) The simulations quantitatively reproduce Maxwell-Boltzmann velocity distributions
(Figures 2-9), validating our collision implementation. Temperature-dependent shifts

match theoretical predictions.

(ii) Reaction rates exhibit exponential temperature dependence (Figures 9), with extracted
activation energy E, = 210kJ/mol aligning with literature values (209.2 kJ/mol). The

steric factor s = 0.02 reflects simplistic but actionable geometric constraints.

Limitations

e We noticed considerable steric factor variations with respect to temperature.

e Concentration to time graphs exhibit non-ideal asymptotic behaviors with fluctuating

limiting concentration with respect to temperature.

e The model fails to account for the free radical chain reaction mechanisms.

Strengths

Overall, our work establishes a foundation for predictive computational kinetics in hazardous
systems, with methodology generalizable to other gas-phase reactions. The provided imple-

mentation grants a testbed for future improvements in molecular simulation fidelity.

15

Appendix A

import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import k, m_p

from numba import jit

num_particles = 1000
mass = 2 * m_p
T = 100
box_size = 1le-8
steps = 5000
dt = 1le-14
sl radius = 1e-10
s|#init

np.random.seed (42)

7|positions = np.random.rand(num_particles, 2) * box_size

velocities = np.random.normal (0, np.sqrt(k * T / mass), (num_particles, 2)

)

record_every = 100
num_records = steps // record_every

speed_history = np.zeros((num_records, num_particles))

@jit (nopython=True)

def update_system(positions, velocities, speed_history, steps, dt,
record_every):
record_index = 0
for step in range(steps):

positions += velocities * dt

Elastic boundary conditions
for dim in [0, 1]:

mask = positions[:, dim] <= 0

velocities [mask, dim] = np.abs(velocities[mask, dim])
positions [mask, dim] = O

mask = positions[:, dim] >= box_size

velocities [mask, dim] = -np.abs(velocities[mask, dim])
positions [mask, dim] = box_size

16

N

Record speeds periodically

if step % record_every == O:
speeds = np.sqrt(velocities[:, O0]**2 + velocities[:, 1]x%*2)
speed_history[record_index] = speeds

record_index += 1

7lupdate_system(positions.copy(), velocities.copy(), speed_history, steps,

dt, record_every)

all_speeds = speed_history.flatten ()

distribution for 2D

v_theoretical = np.linspace(0, 5000, 200)

pdf _theoretical = (mass / (k * T)) * v_theoretical * np.exp(-mass *
v_theoretical**2 / (2 * k * T))

plt.figure(figsize=(10, 6))

5|plt.hist (all_speeds, bins=100, density=True, alpha=0.6, label="Simulated

Speeds")
plt.plot(v_theoretical, pdf_theoretical, ’r-’, label="Theoretical 2D MB")
plt.xlabel ("Speed (m/s)")
plt.ylabel ("Probability Density")
plt.legend ()
plt.grid(True)
plt.show ()

Listing 1: 2D Molecular Dynamics Simulation

Appendix B

import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import k, m_p

from numba import jit, prange

Constants

mass_H = m_p

mass_Cl = 35.45 * m_p
bond_length_H2 = 0.74e-10
bond_length_Cl12 = 1.99e-10
Ea = 25e3 # J/mol

T = 1000 # K

17

box_size = 1le-9
r_crit = 1.0e-10

slnum_molecules = 500 # H2-Cl2 pairs

steps = 1000
dt = le-14

record_interval = 100

Initialize molecules (vectorized)
@jit (nopython=True)
def initialize_molecules():
com_H2 = np.random.rand(num_molecules, 2) * box_size

com_Cl2 = com_H2 + (np.random.rand(num_molecules, 2) - 0.5) *x 2e-10

Orientations
theta_H2 = np.random.rand(num_molecules) * 2 * np.pi

theta_Cl2 = np.random.rand(num_molecules) * 2 * np.pi

Atom positions

H1 = com_H2 + 0.5 * bond_length_H2 * np.column_stack((np.cos(theta_H2)
, np.sin(theta_H2)))

H2 = com_H2 - 0.5 * bond_length_H2 * np.column_stack((np.cos(theta_H2)
, np.sin(theta_H2)))

Cl1 = com_Cl2 + 0.5 * bond_length_Cl2 * np.column_stack((np.cos(
theta_Cl2), np.sin(theta_Cl12)))

Cl2 = com_Cl2 - 0.5 * bond_length_Cl2 * np.column_stack((np.cos(
theta_Cl2), np.sin(theta_Cl12)))

Velocities (Maxwell-Boltzmann)
v_H2 = np.random.normal (0, np.sqrt(k*T/mass_H), (num_molecules, 2))

v_Cl2 = np.random.normal (0, np.sqrt(k*T/mass_Cl), (num_molecules, 2))

return com_H2, com_Cl2, v_H2, v_Cl2, H1, H2, Cl1, Cl2

Vectorized collision handling
@jit (nopython=True, parallel=True)
def update_collisions(com_H2, com_Cl2, v_H2, v_Cl2):
for i in prange(num_molecules):
for j in prange(i+l, num_molecules):
dx = com_H2[i,0] - com_C1l2[j,0]
dy com_H2[i,1] - com_Cl2[j,1]

Minimum image convention

dx -= box_size * np.round(dx/box_size)

18

dy -= box_size * np.round(dy/box_size)

dist_sq = dx*dx + dyx*dy

if dist_sq < (bond_length_H2 + bond_length_Cl2)*x*2 /4:
Normal vector
inv_dist = 1.0/np.sqrt(dist_sq)
nx = dx * inv_dist

ny = dy * inv_dist

Relative velocity
dvx = v_H2[i,0] - v_Cl2[j,0]
dvy = v_H2[i,1] - v_Cl2[j,1]

H

Impulse calculation

J = 2 x (dvx*nx + dvy*ny) / (1/mass_H + 1/mass_Cl)

Update velocities

v_H2[i,0] -= J * nx / mass_H

v_H2[i,1] -= J * ny / mass_H

v_Cl2[j,0] += J * nx / mass_Cl

v_Cl2[j,1] += J * ny / mass_Cl
return v_H2, v_Cl2

Fast steric factor calculation
@jit (nopython=True)
def calculate_steric(com_H2, com_Cl2, H1, H2, Cl1, Cl2, v_H2, v_Cl2):
E_relative = 0.5 * (mass_H#*mass_Cl)/(mass_H + mass_Cl) * (
(v_H2[:,0] - v_Cl2[:,0])**x2 +
(v_H2[:,1] v_Cl2[:,1])**x2) * 6.022e23

steric_count = 0

energetic_count = 0

for i in range(num_molecules):
if E_relative[i] >= Ea:

energetic_count += 1

Check H1 and H2 distances to Cl1-Cl midpoint

Cl_mid = (C11[i] + Cl2[i])/2

di = np.sqrt ((H1[i,0]-Cl_mid [0])**2 + (H1[i,1]-Cl_mid[1])*%2)
d2 = np.sqrt ((H2[i,0]-Cl_mid [0])**2 + (H2[i,1]1-Cl_mid[1]) **2)

if d1 < r_crit or d2 < r_crit:

19

96

109

110

111

114

116

steric_count += 1

return steric_count / max (1, energetic_count)

Main simulation
com_H2, com_Cl2, v_H2, v_Cl2, H1, H2, Cli1, Cl2 = initialize_molecules()

steric_history = []

for step in range(steps):
Update positions
com_H2 += v_H2 * dt
com_Cl2 += v_Cl2 * dt

Periodic boundaries
com_H2 %= box_size

com_Cl2 %= box_size

Update atom positions

H1 = com_H2 + 0.5 * bond_length_H2 * (H1 - com_H2) / np.sqrt(np.sum((
H1 - com_H2)*%*2, axis=1))[:,None]

H2 = com_H2 - 0.5 * bond_length_H2 * (H2 - com_H2) / np.sqrt(np.sum((
H2 - com_H2)**2, axis=1))[:,Nonel

Cl1 = com_Cl2 + 0.5 * bond_length_Cl2 * (Cl1 - com_Cl2) / np.sqrt(np.
sum ((Cll - com_Cl2)**2, axis=1))[:,None]

Cl2 = com_Cl2 - 0.5 * bond_length_Cl2 * (Cl2 - com_Cl2) / np.sqrt(np.
sum ((Cl2 - com_Cl2)**2, axis=1))[:,None]

Handle collisions

v_H2, v_Cl2 = update_collisions(com_H2, com_Cl2, v_H2, v_Cl2)

Record steric factor

if step % record_interval == O0:
steric_history.append(calculate_steric(com_H2, com_Cl2, H1, H2,

Ccli, Cl2, v_H2, v_Cl2))

s|# Plot results

plt.figure(figsize=(10,5))

7| plt.plot(np.arange(len(steric_history))*record_interval*dt, steric_history

, ’b-07)
plt.xlabel ("Time (s)")
plt.ylabel("Steric factor")
plt.title("Steric Factor Evolution (Optimized Simulation)")
plt.grid(True)

20

132 plt . show ()

Listing 2: Steric Factor Evolution

Appendix C

import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import k, m_p

from numba import jit

Constants and setup

num_particles = 500
mass_H2 = 2 * m_p
mass_Cl2 = 70 * m_p
box_size = 1le-8
steps = 100 # Keep it short per run to reach t=50
dt = le-14
radius = 1le-10
steric_factor = 0.02
s|record_every = 1 # Record every step

times = np.arange(0, steps * dt, dt)

Temperature range to investigate
temperature_range = np.linspace (400, 1000, 10) # Example: 10 points
between 400K and 1000K

average_steric_factors = []

@jit (nopython=True)

def simulate(positions, velocities, is_H2, is_Cl2, reacted, steric_factor)

reaction_counts = np.zeros(steps)

attempted_reactive_collisions = np.zeros(steps)

for step in range(steps):

positions += velocities * dt

Wall collisions
for dim in [0, 1]:

mask = positions[:, dim] <= 0
velocities [mask, dim] = np.abs(velocities[mask, dim])
positions [mask, dim] = O

21

mask = positions[:, dim] >= box_size

velocities [mask, dim] = -np.abs(velocities[mask, dim])
positions [mask, dim] = box_size
step_reactions = 0

step_attempts = 0

for i in range(num_particles):
if reacted[i]:
continue
for j in range(i + 1, num_particles):
if reacted[j]:
continue
if (is_H2[i] and is_C12[j]) or (is_H2[j] and is_C1l2[il]):
dx = positions[i, 0] - positions[j, O]
dy = positions[i, 1] - positiomns[j, 1]
dist = (dx**2 + dy*#*2)**0.5
if dist < 2 * radius:
step_attempts += 1
if np.random.rand() < steric_factor:
reacted[i] = True
reacted[j] = True

step_reactions += 1

break
reaction_counts [step] = step_reactions
attempted_reactive_collisions[step] = step_attempts

return reaction_counts, attempted_reactive_collisions

5| average_steric_factors = []

temperature_range = np.arange(BOO, 1201, 10)

for T in temperature_range:
np.random. seed (42)
positions = np.random.rand(num_particles, 2) * box_size
masses = np.array([mass_H2] * (num_particles // 2) + [mass_Cl2] * (
num_particles // 2))
velocities = np.random.normal (0, 1, (num_particles, 2)) * np.sqrt(k x*

T / masses).reshape(-1, 1)

is_H2 = np.array([True] * (num_particles // 2) + [False] * (
num_particles // 2))

22

75 is_Cl2 = “is_H2

76 reacted = np.zeros (num_particles, dtype=bool)

78 reactions, attempts = simulate(positions.copy(), velocities.copy(),

is_H2, is_Cl2, reacted, steric_factor)

80 with np.errstate(divide=’ignore’, invalid=’ignore’):

81 steric_factors = np.where(attempts > 0, reactions / attempts, 0.0)
82

83 mean_steric = np.mean(steric_factors[20:51])

84 average_steric_factors.append(mean_steric)

6| # Plotting

s7|plt.figure(figsize=(10, 6))

ss| plt.plot (temperature_range, average_steric_factors, marker=’o’, color=’
teal’, label=’Avg. steric factor (t=20750)°)

so| plt.axhline (steric_factor, color=’red’, linestyle=’--’, label=’Theoretical
steric factor’)

90| plt.xlabel (’Temperature (K)?’)

91| plt.ylabel (’Average Steric Factor’)

92| plt.title (’ Temperature Dependence of Average Steric Factor’)

93 plt . grid (True)

94| plt.legend ()

95 plt . show ()

Listing 3: Steric Factor over Temperature

Appendix D

1| import numpy as np
2| import matplotlib.pyplot as plt
3l from itertools import combinations

4| from scipy.optimize import curve_fit

6| # Parameters
7lnum_h2 = 100
slnum_cl2 = 100
10.0
100

ol box_size

10l sim_time
11{dt = 0.1

12| particle_radius = 0.3

13l p_reaction = 0.02 # Reaction probability upon collision

23

temperature = 600 # Kelvin (can be varied)
k_B = 1.380649e-23 # Boltzmann constant (J/K)

7|# Molecular masses (kg)

mass_h2 = 3.347e-27
1.177e-25
(mass_h2 + mass_cl2)/2

mass_cl2

mass_hcl

def maxwell_boltzmann_velocity(mass, temp, num_particles):
"""Generate velocities according to Maxwell-Boltzmann distributiomn"""
scale = np.sqrt(k_B * temp / mass)

return np.random.normal (0, scale, (num_particles, 2))

Initialize particles with temperature-dependent velocities

particles = []

h2_velocities = maxwell_boltzmann_velocity(mass_h2, temperature, num_h2)

cl2_velocities = maxwell_boltzmann_velocity(mass_le, temperature, num_cl2
)

for i in range(num_h2):
particles.append ({
’pos’: np.random.rand (2) * box_size,
’vel’: h2_velocities[i],
’type’: ’H2’,
’mass’: mass_h2
1))
for i in range(num_cl2):
particles.append ({
’pos’: np.random.rand(2) * box_size,
’vel’: cl2_velocities[i],
’type’: ’Cl2’,
’mass’: mass_cl2

1))

7|def handle_collision(pl, p2):

"""Process collision between two particles with conservation of

momentum"""
Check if H2-Cl2 collision
if {p1[’type’]l, p2[’type’l} == {’H2’, ’Cl2°}:

if np.random.rand() < p_reaction:
Reaction - return 2 new HCl particles with conserved
momentum

new_pos = (pl[’pos’] + p2[’pos’]) / 2

24

54 total_mass = pl[’mass’] + p2[’mass’]

55 avg_velocity = (pl[’mass’]*pl[’vel’] + p2[’mass’]*p2[’vel’])/
total_mass

56 # Add thermal fluctuations to product velocities

57 thermal_vel = maxwell_boltzmann_velocity(mass_hcl, temperature
, 2)

58 return [

59 {’pos’: new_pos.copy(),

60 ’vel’: avg_velocity + thermal_vel[0],

61 ’type’: ’HC1l’,

62 ’mass’: mass_hcl},

63 {’pos’: new_pos.copy(),

64 ’vel’: avg_velocity + thermal_vel([1],

65 ’type’: ’HC1’,

66 ’mass’: mass_hcl}

6]

68

69 # No reaction - elastic collision with momentum conservation
70 r_vec = pl[’pos’] - p2[’pos’]

71 r_hat = r_vec/np.linalg.norm(r_vec)

72 v_rel = pl[’vel’] - p2[’vel’]

73 v_mag = np.dot(v_rel, r_hat)

75 # Only collide if approaching each other
76 if v_mag < O:

77 j = 2 * pl[’mass’] * p2[’mass’] * v_mag / (pl[’mass’] + p2[’mass’

D
78 pll[’vel’] -= j * r_hat / pl[’mass’]
79 p2[’vel’] += j * r_hat / p2[’mass’]
80
81 return [pl, p2]

s3|# Track concentrations

s time_points = []
s5|h2_conc = []
s6| €12_conc = []
s7lhcl_conc = []

88
go| # Main simulation loop

ool for t in np.arange (0, sim_time, dt):
91 # Move particles

92 for p in particles:

93 pl’pos’] += pl[’vel’] * dt

25

94 # Boundary collisions

95 pl’pos’] = np.clip(p[’pos’], 0, box_size)

96 pl’vel’] = np.where((p[’pos’] <= 0) | (p[’pos’] >= box_size), -p[’
vel’]l, pl’vel’])

98 # Detect and process collisions
99 new_particles = []

100 processed = set()

102 for i, pl in enumerate(particles):
103 if i in processed:

104 continue

106 for j, p2 in enumerate(particles[i+1:], i+1):
107 if j in processed:

108 continue

110 dist = np.linalg.norm(pl[’pos’] - p2[’pos’])

111 if dist < 2 * particle_radius:

112 processed.update ([i, j1)

113 new_particles.extend (handle_collision(pl.copy(), p2.copy ()
))

114 break

115 else:

116 new_particles.append(pl.copy())

118 particles = new_particles

120 # Record concentrations

121 counts = {’H2’:0, °Cl2’:0, ’HC1l’:0}
122 for p in particles:
123 counts[p[’type’]] += 1

125 time_points.append (t)

126 h2_conc.append(counts[’H2’] / (num_h2 + num_cl2))
127 cl2_conc.append(counts[’C1l2’] / (num_h2 + num_cl2))
128 hcl_conc.append(counts[’HC1’] / (num_h2 + num_cl2))

130/ # Define fitting functions
131|def exp_decay(t, a, k, c):

132 return a * np.exp(-k * t) + ¢

131| def exp_growth(t, a, k, c):

26

135 return a * (1 - np.exp(-k * t)) + c

137 # Fit curves

38| p0_h2 = [1, 0.1, 0] # Initial guesses for amplitude, rate, offset

130l popt_h2, pcov_h2 = curve_fit(exp_decay, time_points, h2_conc, pO=p0_h2)
110l popt_cl2, pcov_cl2 = curve_fit(exp_decay, time_points, cl2_conc, pO=p0_h2)
41| popt_hcl, pcov_hcl = curve_fit(exp_growth, time_points, hcl_conc, pO=p0_h2
)

143| # Generate fitted curves

144 £it_h2 = exp_decay(np.array(time_points), *popt_h2)
45| £it_cl2
46| £fit_hcl

exp_decay (np.array(time_points), *popt_cl2)

exp_growth(np.array(time_points), *popt_hcl)

148 # Plot results
110/ plt . figure (figsize=(10, 6))

151|# Plot raw data

152 plt .plot (time_points, h2_conc, ’b-’, label="[H] (sim)’, alpha=0.3)
1535 plt .plot (time_points, cl2_conc, ’g-’, label="[C1] (sim)’, alpha=0.3)
154 plt . plot (time_points, hcl_conc, ’r-’, label=’[HC1l] (sim)’, alpha=0.3)

56| # Plot fitted curves

157 plt . plot (time_points, fit_h2, °’b--’, label=f’Fit H : {popt_h2[0]:.2f}exp
(-{popt_h2[1]:.2f}t) + {popt_h2[2]:.2f}’)

55| plt.plot (time_points, fit_cl2, ’g--’, label=f’Fit C 1 : {popt_cl2[0]:.2f}
exp (-{popt_cl2[1]:.2f}t) + {popt_cl2[2]:.2f}’)

150 plt . plot (time_points, fit_hcl, ’r--’, label=f’Fit HCl: {popt_hcl[0]:.2f
}(1-exp(-{popt_hcl[1]:.2f}t)) + {popt_hcl[2]:.2f}’)

160
61| plt .xlabel (’Time’)

162| plt.ylabel (’Concentration’)

63| plt.title (£’ H &+ © 1 2HC1 Reaction Kinetics\n(T={temperaturel}K,
p_reaction={p_reaction}) ’)

64| plt . legend ()

165| plt . grid (True)

66| plt . tight_layout ()

167 p1lt . show ()

Listing 4: Steric Factor over Temperature

27

Bibliography

Suresh Sharma. H2 — y2 reactions (y = cl, br, i): A comparative and mechanistic aspect.
Journal of Chemistry, Environmental Sciences and its Applications, 1:45-51, 09 2014. doi:
10.15415/jce.2014.11005.

28

	Introduction
	Background and Motivation
	Research Significance

	Methodology
	Research Goals
	Simulation Approach

	Reaction Criterion
	Maxwell-Boltzmann Distribution Simulation
	Activation Energy Calibration
	Steric Factor Calibration
	Reaction Rate Determination
	Concentration to Time Graphs
	Arrhenius-Type Regression

	Evaluation and Future Work
	Steric Factor
	Graph of Concentration to Time
	Reaction Mechanisms
	Molecular Simplifications

	Conclusion and Final Remarks
	Bibliography

